

LAB-SMS

ET System electronic GmbH

Hauptstraße 119-121 68804 Altlußheim

Telefon 06205 3948-0 Fax 06205 37560 info@et-system.de www.et-system.de

Softwareversion: V69

Februar 2016

Inhaltsverzeichnis

Info & Kontakt-Adressen	1
Technische Daten	2
Umgebungsbedingungen	2
Eingangsspezifikationen	2
Ausgangsspezifikationen	3
AI-Schnittstelle	3
RS 232	3
RS 485	3
Technische Zeichnung	4
Wichtige Sicherheitshinweise	5
Inbetriebnahme	5
Auspacken	5
Aufstellen	5
Sichtinspektion	5
Netzbetrieb	5
Funktionsbeschreibung	5
Allgemeine Einstellungen	
Konfiguration	7
Kontrast	
Spannungseinstellungen	7
U _{limit} und I _{limit}	
OVP (Over Voltage Protection)	8
AI-Type	
Remember Last Setting	8
M/S-Modus	
Schnittstellenparameter (Option)	
Frontbedienung	
Tastenfeld und Drehimpulsgeber	
Anzeigen und Einstellungen	
Aktuelle Messwerte (Display)	
Übersichtsbildschirm	
UI-Darstellung	
Betriebsarten	
Auswahl der einzelnen Betriebsarten	
Gespeicherte Festeinstellung	
Bedeutung der Betriebsarten	10
Universalinterface	
Befehle	
Format	
Befehlssatz	
Schnellübersicht der Befehle	
Ausführliche Beschreibung der Befehle	
Antwortstring	
Ext. Steuerung: Computer	
GPIB	
Statuswort	
ESR-Register - Event-Status-Register	
RS232 Schnittstelle	
Neukonfiguration der Schnittstelle	
RS485 Schnittstelle	
Neukonfiguration der Schnittstelle	20

Ext. Steuerung: Al-Schnittstelle (Option)	29
Steckverbindung AI-Schnittstelle	29
Analogeingang	30
Sollwert U (U _{Set})	30
Sollwert I (I _{Set})	30
Sollwert OVP (U _{OVP})	30
Analogausgang	30
Monitor Sollwert U (U _{mon})	30
Monitor Sollwert I (Imon)	30
Monitor Istwert P (Pmon)	31
Analogausgang OVP (UovPmon)	31
Monitor Ausgangsspannung (Ulstmon)	31
Monitor Ausgangsstrom (I _{Istmon})	31
Digitaleingang	31
Aktivierung (Ext. Control)	31
Soft-Interlock	31
Sperrung (Standby)	31
Digitalausgang	32
Sperrung (Standby)	32
Const. Voltage-Modus (CV)	
Fehler (Error)	32
Ext. Steuerung: Ethernet (LAN)	
Manuelle IP-Zuweisung unter Microsoft Windows®	
Steuerung des Gerätes über einen Browser	
Steuerung des Gerätes über Telnet	
Überwachung des Gerätes über einen Browser	
Ext. Steuerung: USB	
Neukonfiguration der Schnittstelle	
Datenlog-Funktion (Option)	
Datenformat der gespeicherten Daten	
Script-Modus	
Ausführen/Laden eines Scripts	
Befehle	
Syntax	
Schnellübersicht der Befehle	
Ausführliche Beschreibung der Befehle	
Regler	
Reglerstruktur PVsim-Modus und User-Modus	
Reglerstruktur UIP-Modus	
Reglerstruktur UIR-Modus	
Reglerparameter	
Sensebetrieb	
Lastanschluss ohne Fühlerleitung.	
Lastanschluss mit Fühlerleitung	
Lastaufteilung ohne Fühlerleitung	
Master/Slave-Modus (M/S-Mode)	
Betriebsarten im Master/Slave-Modus	
M/S-Modus Off	
M/S-Modus Parallel	
M/S-Modus Serial	
M/S-Modus Independent	
Übersicht der angeschlossenen Geräte	
Steuerung im Master/Slave-Modus über ein digitales Interface	
Ersatzableitstrommessung nach VDE 0701	
<u> </u>	
Eigene Notizen	49

INFO & KONTAKT-ADRESSEN

Die ET System electronic GmbH wurde 1986 im Herzen des Rhein-Neckar-Dreiecks gegründet. Als Tochterunternehmen einer führenden Stromversorgungsgruppe übernahm das Unternehmen schnell eine Führungsrolle im Bereich der Laborleistungselektronik und der dazugehörigen Messtechnik. Durch das vorhandene Know-how um die Stromversorgung entstand in den 90er Jahren der Produktbereich "Power Solutions", als starke Ergänzung zum historischen Bereich "Test & Measurement".

Seit 1997 arbeiten wir als eigenständiges, privat geführtes Unternehmen erfolgreich mit Kunden aus allen Bereichen von Industrie, Telekommunikation, Medizin, Bahntechnik und Automobilelektronik.

Mit unserer hohen Fertigungstiefe und unserer ständig expandierenden Entwicklungsabteilung können wir uns schnell und flexibel auf die Anforderungen unserer Kunden einstellen. Notwendige Zulassungen, wie CSA, UL, VDE, TÜV etc. werden kurzfristig durch qualifiziertes Personal flexibel vorgenommen. Die Zulassungsprozeduren werden im Rahmen der Entwicklungsplanung durchgeführt und belasten den Fertigungsstart somit nicht.

Ständige Fertigungsüberwachungen durch die akkreditierten Prüfstellen sowie ein Qualitätsmanagementsystem nach ISO 9001 garantieren eine gleichbleibend hohe Serienqualität.

Wir bieten für Geräte aus unserem Hause Reparaturen außerhalb der Garantiezeit sowie Einstellung an. Bitte kontaktieren Sie den für Sie zuständigen Wiederverkäufer für weitere Informationen.

Für Service-Anfragen und technische Unterstützung wenden Sie sich bitte an eine der folgenden Adressen:

Deutschland	Großbritannien	Frankreich	Korea
ET System electronic GmbH	ET Power Systems Ltd.	ET Systeme electronic	ET System electronic
Hauptstraße 119-121	The Bridge Business Centre	4 rue Ampère	Korea Corporation
68804 Altlußheim	Chesterfield	38080 L'Isle d'Abeau	DaeHyeon Techno World 1203
	S41 9FG		19,Ojengongeup-gil,
Deutschland		France	Uiwang-si,
	United Kingdom		Gyeonggi-do 437-753
			Republic of Korea
Tel.: +49 (0) 6205 39480	Tel.: +44 (0) 1246 452909	Tel.: +33 (0) 474 278234	Tel : +82 (0) 31 451 4491
Fax: +49 (0) 6205 37560	Fax: +44 (0) 1246 452942	Fax: +33 (0) 474 278068	Fax: +82 (0) 31 453 4459
em@il: info@et-system.de	em@il: sales@etps.co.uk	em@il: info@et-system.fr	em@il: et.korea@et-system.de
			et.asia@et-system.de
web: www.et-system.de	web: www.et-system.com	web: www.et-system.fr	web: www.et-system.kr

Sitz der Gesellschaft: Altlußheim, Deutschland

USt.Id.Nr.: DE 144 285 482

Registergericht: Mannheim, Deutschland

Registernummer: HRB 421186
Geschäftsführer: Dipl.-Ing. Eric Keim
Vertriebsleiter: Roland Kosmowski
Technischer Leiter: Hermann Amtsberg

TECHNISCHE DATEN

UMGEBUNGSBEDINGUNGEN

Kühlung	Lüfter
Betriebstemperatur	0 - 50 °C
Lagertemperatur	-20 - 70 °C
Luftfeuchtigkeit	< 80 %
Betriebshöhe	< 2.000 m
Vibration	10 - 55 Hz/1 min/2G XYZ
Schock	< 20 G
Gewicht	5 kW 19 kg, 10 kW 26 kg

EINGANGSSPEZIFIKATIONEN

Тур	3 kW	4 kW	5 kW	6 kW	8 kW	10 kW
Anschluss	3 wire (1P+N+E) oder 5 wire (3P+N+E)					
Eingang 1P/230		1 x 230 V _{ac} (207-253 V _{ac} 47-63 Hz)				
Eingang 3P/208			3 x 208 V _{ac} (187-2	29 V _{ac} 47-63 Hz)		
Eingang 3P/400			3 x 400 V _{ac} (360-4	40 V _{ac} 47-63 Hz)		
Eingang 3P/440			3 x 440 V _{ac} (396-4	84 V _{ac} 47-63 Hz)		
Eingang 3P/480			3 x 480 V _{ac} (432-5	28 V _{ac} 47-63 Hz)		
Max. zulässige Nichtsymmetrie			< 3	%		
Eingangsstrom (3 Phasen) 3P/400 model ¹ , ²	7,5 A _{eff}	10 A _{eff}	12 A _{eff}	15 A _{eff}	20 A _{eff}	25 A _{eff}
Einschaltstrom ²	< 25 A	< 25 A	< 76 A	< 51 A	< 51 A	< 51 A
Nennstrom Interne Sicherung ³	15 A	15 A	15 A	20 A	25 A	32 A
Trennungsstärke Sicherung/Sicherungsautomatik ³			eingebauter Schutzsc	haltertyp: KLK 20 A		
Empfohlener Sicherungsautomat (Wert- und Leistungskurve)	16 A Typ D/K	16 A Typ D/K	16 A Typ D/K	16/32 A Typ D/K	< 32 A Typ D/K	< 32 A Typ D/K
Ableitstrom	< 35 mA	< 35 mA	< 35 mA	< 35 mA	< 35 mA	< 35 mA
Cos phi	> 0,7	> 0,7	> 0,7	> 0,7	> 0,7	> 0,7
			50 Hz = 100 Hz	= 2 %		
Oberwellengehalt ⁴	150 Hz = 0,9 %					
	200 Hz = 0,1 % 250 Hz = 11 %					
Typischer Wirkungsgrad ¹	94 %	94 %	350 Hz = 94 %	94 %	94 %	94 %
Verlustleistung	200 W	260 W	320 W	390 W	520 W	640 W

ET System electronic GmbH

2

¹ für Nennstrom und Nennspannung

² für Nenneingangsspannung

³ Interne Hauptsicherung

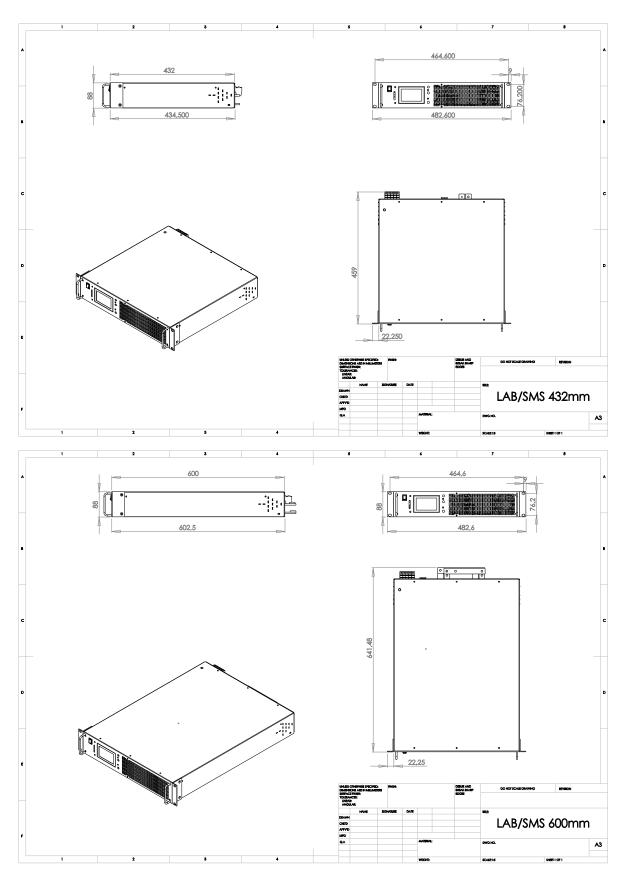
⁴ Hauptharmonische des Eingangsstroms ([%]/lein)

AUSGANGSSPEZIFIKATIONEN

Statische Spannungsregelung	± 0,05 % + 2 mV
Statische Stromregelung	± 0,1 % + 2 mA
Ausregelzeit	< 1-3 ms (typ.)
Restwelligkeit	< 0,2 % RMS (typ.)
Stabilität	± 0,05 %
Programmiergenauigkeit (U₃)	± 0,05 % +2 mV
Programmiergenauigkeit (Ia)	± 0,05 % +2 mA
Anzeigegenauigkeit (U₃)	<±0,5 %
Anzeigegenauigkeit (I₃)	< ± 0,5 %
Isolation	3.000 V
Überspannungsschutz	0 - 120 % V _{max}
Schutzeinrichtungen	OC/OV/OT/OP
Netzregelung	< ± 0,1 % + 2 mV

AI-SCHNITTSTELLE

Digitale Ausgänge (CV, Standby, Error)	Ausgangstyp: Open-Kollektor mit Pullup-Widerstand 10 k nach + 5 V I _{sinkmax} : 50 mA
Digitale Eingänge (Ext. Control, Standby)	Eingangswiderstand: 47 kΩ Maximale Eingangsspannung: 50 V Highpegel: $U_e > 2$ V Lowpegel: $U_e < 0.8$ V
Analoge Ausgänge (X _{mon})	Ausgangswiderstand: $100~\Omega$ Minimal zulässiger Lastwiderstand: $2~k\Omega$ Minimaler Lastwiderstand für eine Genauigkeit von $0,1~\%$: $100~k\Omega$
Analoge Eingänge (X _{set})	Eingangswiderstand: $1\text{M}\Omega$ Maximal zulässige Eingangsspannung: 25V
Referenzspannung	Referenzspannung U_{ref} : $10~V \pm 10~mV$ Ausgangswiderstand: $< 10~\Omega$ Max. Ausgangsstrom: $10~mA$ (nicht kurzschlussfest)
5 V - Versorgungsspannung	Ausgangsspannung: 5 V ± 300 mV Max. Ausgangsstrom: 50 mA (nicht kurzschlussfest)


RS 232

Signaleingänge (RxD, CTS)	Max. Eingangsspannung: \pm 25 V Eingangswiderstand: 5 kΩ (Typ) Schaltschwellen: U _H < - 3 V, U _L > + 3 V
Signalausgänge (TxD, RTS)	Ausgangsspannung (bei $R_{Last} > 3~k\Omega$): min \pm 5 V, Typ \pm 9 V, max \pm 10 V Ausgangswiderstand: < 300 Ω Kurzschlussstrom: Typ \pm 10 mA

RS 485

Max. Eingangsspannung	±5 V
Eingangswiderstand	> 12 kΩ
Ausgangsstrom	± 60 mA Max
Highpegel	U _d > 0,2 V
Lowpegel	U _d < - 0,2 V

TECHNISCHE ZEICHNUNG

WICHTIGE SICHERHEITSHINWEISE

Lesen Sie diese Betriebsanleitung sorgfältig durch, bevor Sie das Gerät in Betrieb nehmen.

Beachten Sie alle folgenden Sicherheitshinweise und halten Sie die Betriebsanleitung den für künftigen Gebrauch bereit.

Diese Bedienungsanleitung entspricht dem technischen Stand bei Drucklegung. Es ist jedoch möglich, dass das vorliegende Handbuch trotz regelmäßiger Überprüfung und Korrektur noch drucktechnische Mängel oder Fehler aufweist. Die ET System electronic GmbH übernimmt keine Haftung für Irrtümer, technische Fehler, Übersetzungs- und Druckfehler dieser Bedienungsanleitung.

INBETRIEBNAHME

AUSPACKEN

Der Versandkarton sowie die Verpackung sind auf etwaige Beschädigungen zu untersuchen. Sollte die Verpackung beschädigt sein, ist die Art der Beschädigung zu notieren. Außerdem sollte die Verpackung unbedingt aufgehoben werden, falls Ersatzansprüche geltend gemacht oder das Gerät transportiert werden soll.

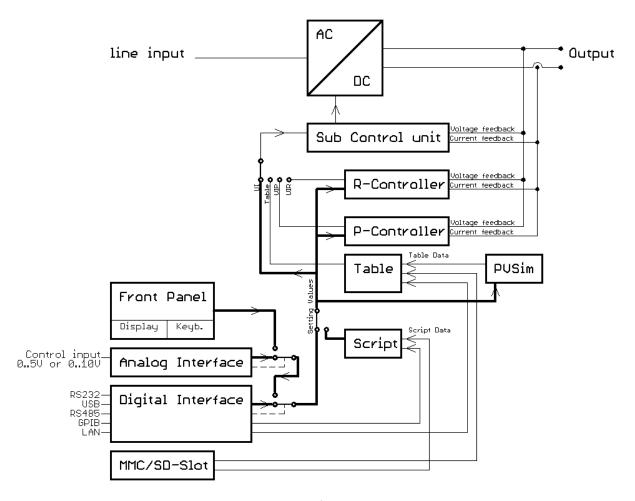
AUFSTELLEN

Um Stromschläge und Fehler zu vermeiden, sollte das Gerät nur in Räumen mit konstanter Raumtemperatur und niedriger Luftfeuchtigkeit betrieben werden. Die durchschnittliche Raumtemperatur sollte 50°C nicht überschreiten. Das Gerät darf keinen Flüssigkeiten oder Feuchtigkeit ausgesetzt werden.

SICHTINSPEKTION

Das Gerät ist auf Transportschäden zu untersuchen. Schäden, die vom Transport herrühren, können zum Beispiel gelockerte oder defekte Kontrollknöpfe, sowie verbogene oder defekte Stecker sein. Sollten am Gerät äußerliche Beschädigungen zu erkennen sein, nehmen Sie es keinesfalls in Betrieb sondern setzen Sie uns unverzüglich davon in Kenntnis.

NETZBETRIEB


Überprüfen Sie vor dem ersten Gebrauch die Bestellbezeichnung bzw. Spannungsangabe auf dem Typenschild. Beschädigungen, die auf falsche Netzeinspeisung zurück zu führen sind, fallen nicht unter die Garantiebestimmungen.

Das Gerät darf nur direkt am Netz betrieben werden. Um Schäden am Gerät zu vermeiden, schließen Sie es nicht an Trenntransformatoren, Spartransformatoren, Magnetstromkonstanter oder ähnliches an.

FUNKTIONSBESCHREIBUNG

Das folgende Blockschaltbild gibt Aufschluss über die vielfältigen Einstellmöglichkeiten.

Prinzipiell stehen vier verschiedene Beriebsarten zur Verfügung:

UI-Mode	Das Gerät wird mit einer Strom- und Spannungsbegrenzung betrieben.
UIP-Mode	Das Gerät wird mit einer Strom-, Spannungs- und Leistungsbegrenzung betrieben.
UIR-Mode	Das Gerät wird mit einer Strom- und Spannungsbegrenzung betrieben. Zusätzlich wird anhand des aktuellen Ausgangsstroms der Sollwert der Spannung so berechnet, dass ein Innenwiderstand simuliert wird.
Tabellen-Mode	Die Sollwerte für Strom und Spannung sind in einer Tabelle gespeichert. Damit lassen sich beliebige UI-Kennlinien einstellen.

Um die Tabelle zu programmieren gibt es drei Möglichkeiten:

PV-Sim-Mode	Mit den Parametern Uo, Ik, Umpp und Impp wird die UI-Kennlinie eines Solargenerators berechnet und in die Tabelle geschrieben.
Speicherkarte	Über ein Script auf der Speicherkarte kann die Tabelle programmiert werden. Ein Script ist eine einfache Textdatei (→ Scriptsteuerung).
Digitales Interface	Die Tabelle kann über ein digitales Interface programmiert werden (→ Universalinterface, WAVE-Befehle bzw. DAT-Befehl).

Die Einstellung der Sollwerte und die Auswahl der Betriebsart erfolgt über Tastatur (\rightarrow Frontbedienung), Interface (\rightarrow Universalinterface) oder eine Analog/Digital-IO (\rightarrow Ext. Steuerung: Al-Schnittstelle).

Hierbei ist dem Interface die höchste, dem Analog/Digital-IO die zweit höchste und der Tastatur die niedrigste Priorität zugewiesen, d.h., wenn beispielsweise das Interface den Sollwert vorgibt, werden die entsprechenden Werte, unabhängig von den anderen Einstellungen, an den Ausgang weitergegeben.

Eine weitere Möglichkeit um einfache Funktionsabläufe zu automatisieren ist die Scriptsteuerung (→ Scriptsteuerung). Der Scriptspeicher speichert eine Befehlsfolge mit der Einstellungen im zeitlichen Ablauf verändert werden können. Der Scriptspeicher kann entweder über die Speicherkarte oder über ein digitales Interface programmiert werden.

Die Messwerte der aktuellen Ausgangsdaten stehen an allen Schnittstellen permanent zur Verfügung. So kann z.B. die aktuelle Ausgangspannung an dem Display abgelesen werden oder über ein digitales Interface ausgelesen werden, wenn die Steuerung über die Analog/Digital-IO erfolgt.

ALLGEMEINE EINSTELLUNGEN

KONFIGURATION

Um in das Konfigurationsmenü zu gelangen, muss die Taste *Display* (unterer Taster) mindestens 1 Sekunde gedrückt werden. Es wird ein Menü angezeigt, in dem die allgemeinen Geräteeinstellungen verändert werden können.

Diese sind U_{limit}, I_{limit}, OVP und Remember last setting. Sofern das Gerät über die entsprechenden Optionen verfügt sind außerdem AI-Type und M/S-Mode einstellbar.

LAB/SMS Config

Ulimit 30.000 V Ilimit 180.0 A OVP 30.500 V AI-Type 5 V

Remember last setting: On

M/S-Mode: Off

Durch Drücken des Drehimpulsgebers werden die einzelnen Parameter an-gewählt. Drehen des Drehimpulsgebers verändert den Wert.

Durch nochmaliges Drücken der Taste *Display* wird das Menü zum Einstellen der Schnittstellenparameter des Digital-interfaces aufgerufen.

KONTRAST

Nach dem Einschalten ist das ET System Logo zu sehen. Jetzt kann mit dem Drehimpulsgeber der Kontrast des Displays eingestellt und automatisch gespeichert werden.

SPANNUNGSEINSTELLUNGEN

UIMIT UND IIMIT

U_{limit} begrenzt die maximale Ausgangsspannung des Gerätes. Die Ausgangsspannung wird auf diesen eingestellten Wert begrenzt, unabhängig davon, welchen Werte an der Front oder an einer der Schnittstellen programmiert werden. Der Einstellbereich geht von 0 V bis zur maximalen Nennspannung des Gerätes.

l_{limit} begrenzt den maximalen Ausgangsstrom des Gerätes. Der Ausgangsstrom wird auf diesen eingestellten Wert begrenzt, unabhängig davon, welche Werte an der Front oder an einer der Schnittstellen programmiert werden. Der Einstellbereich beträgt 0 A bis zum maximalen Nennstrom des Gerätes.

Diese Einstellungen können nur am Display verändert werden und gelten für alle Schnittstellen.

OVP (OVER VOLTAGE PROTECTION)

Überschreitet die Ausgangsspannung den eingestellten Wert, wird der Ausgang sofort abgeschaltet. Dieser Fehler wird im Display durch den Status "OVP" angezeigt. Um diesen Fehler zurückzusetzen, muss die Taste **Standby** betätigt werden.

Der OVP-Wert ist für die Frontbedienung gültig. Die Al-Schnittstelle und das Digitalinterface können eigene Werte vorgeben. Das Digitalinterface wird mit dem an der Front eingegebenen Wert initialisiert.

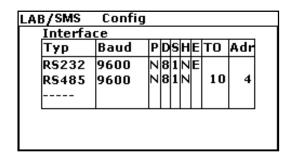
Der Einstellbereich beträgt 0 V bis zur maximalen Nennspannung des Gerätes + 20 %.

AI-TYPE

Hier wird eingestellt, welchen Spannungspegel die analogen Ein- und Ausgangssignale haben. Zur Auswahl stehen die Bereiche 0 - 5 V und 0 - 10 V.

REMEMBER LAST SETTING

Wird diese Option auf "On" gestellt, bleiben die eingestellten Geräteparameter auch nach einem Stromausfall erhalten. Ist die Option ausgeschaltet, wird die Grundeinstellung (0 V/0 A/UI-Modus) nach dem Einschalten der Versorgungsspannung geladen.


M/S-Modus

Im Master/Slave-Betriebsmodus (→ Master/Slave-Modus) sind die folgenden Einstellungen möglich:

Off	kein Master/Slave
Parallel	Ausgänge parallel geschaltet
Serial	Ausgänge in Reihe geschaltet
Independent	Ausgänge unabhängig, nur Austausch von Setzwerten über den Bus

SCHNITTSTELLENPARAMETER (OPTION)

Es werden alle zur Verfügung stehenden digitalen Schnittstellen und deren veränderbare Parameter angezeigt. Die Parameter können durch Drücken des Drehimpulsgebers selektiert und durch Drehen des Drehimpulsgebers verändert werden (Bedeutung der Parameter → Universalinterface).

FRONTBEDIENUNG

TASTENFELD UND DREHIMPULSGEBER

Das Tastenfeld besteht aus einem Drehimpulsgeber mit Tastfunktion und zwei Tasten. Die obere Taste schaltet das Gerät in den Standby- bzw. Run-Modus.

Die untere Taste schaltet den Anzeige-Modus um. Durch Drücken dieser Taste wird die Darstellung des Displays gewechselt. Wird diese Taste ca. 1 Sekunde gedrückt, erscheint das Konfigurationsmenü für die Geräteeinstellungen (→ Geräteeinstellungen) und die Schnittstellen (→ Schnittstellenparameter).

Mit dem Drehimpulsgeber werden die Setzwerte verändert. Drücken des Drehimpulsgebers wählt den zu verändernden Wert aus.

ANZEIGEN UND EINSTELLUNGEN

Aktuelle Messwerte (Display)

Durch Drücken der Taste *Display* kann im normalen Modus zwischen zwei verschiedenen Übersichtsbildschirmen gewechselt werden.

Übersichtsbildschirm

Im Übersichtsbildschirm werden die aktuellen Mess- und Setzwerte angezeigt. Die linke Seite zeigt aktuelle Spannung und aktuellen Strom sowie die sich daraus berechnende Leistung (P = U * I) und der Lastwiderstand ($R = U \div I$). Die Sollvorgaben stehen im rechten Feld ("Preset") und variieren je nach Betriebsart.

LAB/SMS			
U	0.00	V	Preset
<u> </u>	_,	-	U 0,00 V I 0,00 A
I	0,00 0,00	A	1 0,00 A
P	0	W	
R		Ω	Mode: UI
1		16	Mode: UI Standby Loc

 $\begin{array}{lll} U & Ausgangsspannung \\ I & Ausgangsstrom \\ P & Ausgangsleistung (nur UIP-Modus <math>\rightarrow UIP\text{-}Modus) \\ R_i & Innenwiderstand (nur UIR-Modus <math>\rightarrow UIR\text{-}Modus) \\ U_{mpp} & MPP\text{-}Spannung (nur PV_{sim}\text{-}Modus <math>\rightarrow PV_{sim}\text{-}Modus) \\ I_{mpp} & MPP\text{-}Strom (nur PV_{sim}\text{-}Modus <math>\rightarrow PV_{sim}\text{-}Modus) \end{array}$

Im Feld unten rechts wird die aktuelle Steuerung des Gerätes angezeigt:

LocSteuerung über FrontbedienungScrSteuerung über SpeicherkarteAlSteuerung über AnaloginterfaceRemSteuerung über Interfaces

LLO Steuerung über Interfaces, Frontbedienung gesperrt
Dis Gerät über Interlockeingang (Option) gesperrt

Im Feld links von der Steuerungsanzeige wird der aktuelle Betriebszustand des Gerätes angezeigt:

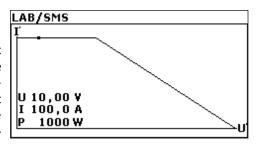
Standby Gerät befindet sich im Standby-Modus
U-Limit Gerät befindet sich im Modus Spannungsbegrenzung

I-Limit Gerät befindet sich im Modus Strombegrenzung
P-Limit Gerät befindet sich im Modus Leistungsbegrenzung
OVP Gerät wird durch Überspannungsschutz abgeschaltet

Im darüber liegenden Feld wird die aktuelle Betriebsart angezeigt:

UI Spannungs- und Strombegrenzung

UIP Spannungs-, Strom- und Leistungsbegrenzung


UIR Spannungs- und Strombegrenzung, Innenwiderstand simuliert

PV_{sim} Simulation einer Photovoltaik-Kennlinie
User Simulation einer benutzerdefinierten Kennlinie

UI-Darstellung

Die Ausgangskennlinie wird grafisch als UI-Kennlinie dargestellt.

Im Bild wurde die Betriebsart UIR ausgewählt. Ein kleiner Punkt zeigt den aktuellen Arbeitspunkt des Gerätes. Die Darstellung der Kennlinie erfolgt immer relativ zu den eingestellten Werten. Würde in dem gezeigten Beispiel die Strombegrenzung von 100 A auf 50 A verändert werden, bei gleichzeitiger Verdoppelung des Innenwiderstands, ergäbe sich das gleiche Bild. Der obere waagrechte Teil der Kennlinie entspricht in diesem Fall 50 A und nicht 100 A.

BETRIEBSARTEN

Auswahl der einzelnen Betriebsarten

Zur Betriebsartauswahl muss der Übersichtsbildschirm sichtbar sein. Durch Drücken des Drehimpulsgebers wird der Fokus (erkennbar an der inversen Darstellung des entsprechenden Feldes) weiter geschaltet.

Wird das Feld "Mode" fokussiert, kann die Betriebsart durch Drehen des Drehimpulsgebers gewählt werden. Hierzu muss das Gerät im Standby-Modus sein, da sonst das Feld "Mode" nicht fokussiert werden kann.

Gespeicherte Festeinstellung

Feste Einstellungen können im Gerät gespeichert und abgerufen werden, d. h. die Frontbedienung ist dann nicht aktiv. Zur Aktivierung bzw. Deaktivierung muss beim Einschalten des Geräts die Taste *Standby* gedrückt und gehalten werden, bis der Startbildschirm mit dem ET-System Logo nicht mehr zu sehen ist.

Zur Einstellung der Voreinstellungen das Gerät einschalten und im Menü Setup die Option "Remember Last Setting" aktivieren. Dann die gewünschten Sollwerte einstellen und das Gerät ausschalten. Die Taste *Standby* gedrückt halten und das Gerät einschalten bis der Startbildschirm mit dem ET-System Logo nicht mehr zu sehen ist. Das Gerät lädt nun die letzten Sollwerte direkt beim Einschalten. Die Steuerung über Frontbedienung ist nicht aktiv. Im Display erscheint in der rechten unteren Ecke die Meldung "Dis". Um diesen Modus wieder zu beenden, muss während des Einschaltens erneut die Taste *Standby* gedrückt werden.

Bedeutung der Betriebsarten

UI-Modus

Im UI-Modus werden die Setzwerte für Spannung und Strom direkt an die Schaltregler weitergegeben. Eine zusätzliche digitale Regelung findet nicht statt.

UIP-Modus

Im UIP-Modus werden die Setzwerte wie im UI-Modus direkt an die Schaltregler weitergegeben. Übersteigt die Ausgangsleistung einen (einstellbaren) Grenzwert, wird der Spannungssollwert abgeregelt.

UIR-Modus

Im UIR-Modus wird der Spannungssollwert so geregelt, dass eine Spannungsquelle mit (einstellbarem) Innenwiderstand simuliert wird. Der Setzwert für die Strombegrenzung wird direkt an die Schaltregler weitergegeben.

PV_{sim}-Modus

Im PVsim-Modus wird die Kennlinie eines PV-Generators simuliert. Vorgegeben werden die Leerlaufspannung U_0 , der Kurzschlussstrom I_k , sowie die Werte für Spannung und Strom, an denen vom PV-Generator die maximale Leistung abgegeben wird (U_{mpp} , I_{mpp}). Diese Parameter sind dem Datenblatt des zu simulierenden PV-Generators zu entnehmen. Der Wert für U_{mpp} darf im Bereich von 0,6 bis 0,95 * U, der Wert für I_{mpp} im Bereich von 0,6 bis 0,95 * I liegen.

Script-Modus

In dieser Betriebsart erfolgt die Steuerung über die Speicherkarte. Im Feld "Mode" erscheint zunächst die Betriebsart "UI". Im Feld unten rechts steht jetzt "Scr". Daran ist zu erkennen, dass die Script-Steuerung ausgewählt ist. Ist keine Speicherkarte eingesteckt, kann dieser Punkt nicht ausgewählt werden.

Eine ausführliche Beschreibung der Steuerung über Speicherkarte, sowie den Aufbau eines solchen SteuerScripts finden Sie im Kapitel \rightarrow Scriptsteuerung.

UNIVERSALINTERFACE

Alle Schnittstellen des Digitalinterfaces sind gleichberechtigt. Es findet daher keine Schnittstellenumschaltung statt. So kann z. B. der erste Befehl über die IEEE-Schnittstelle erfolgen während der zweite Befehl über die RS232-Schnittstelle erfolgt. Rückgabewerte werden immer über diejenige Schnittstelle ausgegeben, von der die Anfrage erfolgte.

BEFEHLE

Die Kommunikation basiert auf einem ASCII-Protokoll. Im Folgenden werden das Format der Befehle sowie eine Übersicht der einzelnen Befehle beschrieben.

Format

Ein Befehl besteht aus Kommando, ggf. Parameter und Befehlsabschluss. Als Zeichen für den Befehlsabschluss dient Carriage Return <*CR*> oder Line Feed <*LF*>.

Zeichen	ASCII	Dez-Wert	Hex-Wert
Carriage Return	<cr></cr>	13	0d
Line Fee	<lf></lf>	10	0a

Ist ein oder <ESC> Zeichen im Befehl enthalten, wird der Befehl nicht ausgeführt. Damit kann ein Befehl während der Eingabe abgebrochen werden. Ein Befehlsabschluss (<CR> oder <LF>) ist trotzdem erforderlich.

Zeichen	ASCII	Dez-Wert	Hex-Wert
Escape	<esc></esc>	27	1b
Delete		127	7f

Es wird nicht nach Groß- und Kleinschreibung unterschieden, d. h. die Schreibweisen können auch gemischt verwendet werden. Somit wirken zum Beispiel die Befehle GTL, gtl und gTL gleich. Die optionalen Nachkommastellen werden durch einen Punkt '.' getrennt. Ihre Anzahl ist nicht begrenzt. Somit haben zum Beispiel die Befehle UA,10, UA,10.0, UA,10.000000000, UA,0010, UA,010.0000 die gleiche Wirkung.

Die Anzahl der Nachkommastellen, die ausgewertet werden, ist abhängig von den jeweiligen Parametern und dem Gerätetyp. Sie entspricht der Anzahl von Nachkommastellen, die der Befehl ohne Parameter zurückgibt. In der Regel werden so viele Nachkommastellen ausgewertet, wie sie für eine Auflösung von 0,1 % erforderlich sind. Beispiel: Auswertung der Nachkommastellen

LAB/SMS mit 600 V, 25 A 600 V * 0,1 % = 0,6 V \rightarrow eine Nachkommastelle 25 A * 0,1 % = 0,025 A \rightarrow drei Nachkommastellen

Optional kann nach einem Zahlenwert zusätzlich ein Buchstabe als Einheit angehängt werden. Dieses Zeichen wird jedoch nicht ausgewertet.

Beispiel: Angehängter Buchstabe als Einheit

UA,10.0 V → Setzt die Ausgangsspannung auf 10 V

UA,10.0 m → Achtung! Das ,m' wird nicht ausgewertet, hier beträgt die Ausgangsspannung ebenfalls 10 V.

Beispiel: Gültiger Befehl mit entsprechenden Hex-Werten

Beispiel: Einstellung einer Ausgangsspannung 10 V/5 A (vollständige Befehlssequenz)

OVP,100 → OVP auf 100 V einstellen

UA,10 → Ausgangsspannung auf 10 V einstellen

IA,5 → Strombegrenzung 5 A SB,R → Freigabe des Ausgangs

Befehlssatz

Die IEEE-488.2-Norm verlangt einige Kommandos als Grundausrüstung. Aus Kompatibilitätsgründen sind deshalb einige Kommandos doppelt vorhanden, einmal in der (alten) ETS-Version und einmal in der IEEE-488.2-Version (z. B. ID und *IDN?).

Nachfolgende Syntax wird zur Beschreibung der Befehle verwendet:

[] Eckige Klammer → optionaler Parameter

<> Spitze Klammer → Zahlenwert {} Geschweifte Klammer → Auswahlliste

| Senkrechter Strich → Trenner in Auswahlliste

<u>Beispiel</u>

GTR[,{0|1|2}] bedeutet, der Befehl GTR kann mit oder ohne Parameter verwendet werden. Wenn ein Parameter angegeben wird, muss der Parameter 1, 2 oder 3 sein. Gültige Befehle sind daher: GTR GTR,1 GTR,2 GTR,3

IA[,<imax>] bedeutet, der Befehl IA kann mit oder ohne Parameter verwendet werden. Falls ein Parameter vorhanden ist, muss dieser ein Zahlenwert sein.

Schnellübersicht der Befehle

Befehl	Beschreibung	Ergebnis
CLS* oder CLS	Clear Status	Löschen des Statusbyte
DAT, <u>,<i></i></u>	DIP	Daten für benutzerdefinierte Kennlinie
DCL	Device Clear	Neu Laden der Initialisierungsdaten
GTL	Go To Local	Starten der Frontbedienung
GTR[,{0 1 2}]	Go To Remote	Starten der Fernsteuerung
IA[, <imax>]</imax>	Set I _{max}	Einstellung der Strombegrenzung.
ID oder *IDN?	Identification	Anzeige des Identification String.
IMPP[, <impp>]</impp>	Set I _{mpp}	Einstellung des MPP-Stroms im PV-Sim-Mode.
LLO	Local Lockout	Deaktivierung des LOCAL-Tasters.
LIMI	Limit Ia	Auslesen der maximal einstellbaren Strombegrenzung.
LIMP	Limit Pa	Auslesen der maximalen Geräteleistung.
LIMR	Limit R	Auslesen des Einstellbereiches für R _i im UIR-Modus.
LIMRMAX	Limit R _{max}	Auslesen des Einstellbereiches für $R_{\rm i}$ im UIR-Modus (Maximalwert).
LIMRMIN	Limit R _{min}	Auslesen des Einstellbereiches für R _i im UIR-Modus (Minimalwert).
LIMU	Limit Ua	Auslesen der maximal einstellbaren Spannungsbegrenzung.
MO- DE[,{UI UIP UIR PVSIM USER Script}]	Set Mode	Auswahl der Betriebsart.
MU[, <nr>]</nr>	Measure U _a	Messung der aktuellen Ausgangsspannung.
MI[, <nr>]</nr>	Measure I _a	Messung des aktuellen Ausgangsstroms.
*OPT?	Optional Identification Query	Ausgabe der Hardware/Software-Version.
OVP[, <uovp>]</uovp>	Overvoltage Protection	Einstellung des Überspannungsschutzes.
PA[, <p<sub>limit>]</p<sub>	Set P _{max}	Einstellung der Leistungsbegrenzung.
PCx[, <baud>,<parity>, <data bits="">,<stop bits="">, <handshake>,<echo>, <timeout>]</timeout></echo></handshake></stop></data></parity></baud>	Program Communication	Einstellung der Schnittstellen.
$RA[,\langle R_i \rangle]$	Set R _i	Einstellung des Innenwiderstands.
REGLER[, <nr>,<kp>,<ki>, <kd>]</kd></ki></kp></nr>	Reglerparameter	Einstellen der Reglerparameter für UIP, UIR und PVsim-Mode
RI oder *RST	Reset Instrument	Reset der Hardware ausführen. Kein Rückgabewert.
SB[,{S R 1 0}]	Standby	Sperrung/Freigabe des Ausgangs.
SCR[, <cmd>[,<value>]]</value></cmd>	Load Script	Programmieren des Scriptspeichers
SS oder *PDU	Save Setup	Speicherung der aktuellen Einstellungen von Kanälen und Schnittstellenparametern. Kein Rückgabewert.
STATUS	Status	Abfrage des Gerätestatus. Rückgabewert im Binärformat (siehe nachfolgende Tabelle)
UA[, <ua>]</ua>	Set U _a	Einstellen der Ausgangsspannung. Bei Eingabe ohne Parameter, wird der aktuelle Sollwert ausgegeben.
	Set U _{mpp}	Einstellen der MPP-Spannung im PV-Sim-Betrieb.
UMPP[, <umpp>]</umpp>	Set Ompp	Bei Eingabe ohne Parameter, wird der aktuelle Sollwert ausgegeben.
UMPP[, <umpp>] WAVE</umpp>	End Userwave Data	Bei Eingabe ohne Parameter, wird der aktuelle Sollwert ausgegeben. Schließt die Übertragung von Daten für eine benutzerdefinierte Ausgangskennlinie ab. Die Interpolation der Zwischenwerte erfolgt stufig.
, II.		Schließt die Übertragung von Daten für eine benutzerdefinierte Ausgangs-

kennlinie.

Ausführliche Beschreibung der Befehle

CLS* oder CLS - Clear Status

Statusbyte löschen. Dieses Kommando wirkt nur auf das Statusbyte der Schnittstelle, von der aus der Befehl gesendet wurde. Kein Rückgabewert.

Beschreibung des Statusbytes: siehe Abschnitte der einzelnen Schnittstellen

DAT,<U>,<I> - Data

Daten für eine vom Benutzer definierte Kennlinie. Kein Rückgabewert. Die genaue Funktion dieses Befehls wird im Abschnitt -> Wavereset beschrieben.

DCL - Device Clear

Neu Laden der Initialisierungsdaten. Kein Rückgabewert.

Achtung: Auch Schnittstellenparameter werden zurückgesetzt!

GTL - Go To Local

Schaltet auf Handbetrieb (Frontbedienung) um. Falls die Einstellung 'Local Lockout' (LLO) zuvor aktiviert war, wird diese ebenfalls zurückgesetzt. Kein Rückgabewert.

GTR[,{0|1|2}] - Go To Remote

Schaltet auf Steuerung über die digitale Schnittstelle um. Der optionale Parameter beeinflusst das zukünftige Verhalten des Gerätes nach dem Einschalten. Die Einstellung wird permanent gespeichert. Kein Rückgabewert.

Optionaler Parameter 0 = Gerät schaltet nicht automatisch auf Remotebetrieb

Um das Gerät in den Fernsteuerbetrieb zu bringen, muss explizit der Befehl GTR gesendet werden. Dieser Modus ist sinnvoll, wenn das Gerät z.B. manuell bedient aber gleichzeitig Messwerte über eine digitale Schnittstelle ausgelesen werden soll.

Optionaler Parameter 1 = Gerät schaltet bei der ersten Adressierung auf Remotebetrieb

Sobald das Gerät einen Befehl über eine digitale Schnittstelle empfängt, schaltet das Gerät in den Remote-Modus um. Die einzige Ausnahme hiervon ist der GTL-Befehl, der das Gerät in den Local-Modus schaltet. Dieser Modus ist bei der Auslieferung des Gerätes aktiviert.

Optionaler Parameter 2 = Gerät geht sofort nach dem Einschalten in Remotebetrieb

Nach dem Einschalten wird sofort der Remote-Mode aktiviert. Die Bedienung über das Frontpanel ist deaktiviert.

IA[,<imax>] - Set I_{max}

Einstellung der Strombegrenzung. Bei Eingabe ohne Parameter, wird der aktuelle Sollwert angezeigt. Ist der Setzwert größer als der maximale Strom des Gerätes, wird das Range-Error-Bit im ESR-Register der Schnittstelle gesetzt. Der aktuelle Setzwert bleibt in diesem Fall unverändert. Ist der Setzwert größer als der I_{limit} -Wert, der in den Benutzereinstellungen eingestellt wird, aber kleiner als der Maximalstrom des Gerätes, so wird die Strombegrenzung auf den I_{limit}-Wert begrenzt. Es erfolgt keine Fehlermeldung.

Beispiel: 300 A-Gerät, Ilimit wurde im Konfigurationsmenü auf 200 A eingestellt

GTR	Fernsteuerbetrieb
OVP,200	Over Voltage Protection 200 V
UA,10	Ausgangsspannung 10 V
IA,100	Ausgangsstrom 100 A
SR R	Ausgang wird freigegeben

IA,400 Ausgangsstrom 400 A, dieser Befehl wird ignoriert, da der Strom größer als der Maximalstrom des Gerätes ist.

Im Statusbyte wird "Rangeerror" gesetzt.

IA,250 Ausgangsstrom 250 A, da im Konfigurationsmenü der Ausgangstrom auf 200 A begrenzt wurde, wird die Strombegren-

zung auf 200 A eingestellt. Ein Fehlerbit wird nicht gesetzt.

IA Abfrage des eingestellten Stroms

IA,200.0A Antwort vom Gerät I_{limit} = 200 A

Im Master-Slave-Betrieb wird der Strom des programmierten Gerätes eingestellt. In Parallelschaltung beträgt der Gesamtstrom n x IA.

Beispiel:

3 Geräte sind im MS-Betrieb parallel geschaltet. Mit IA,10 wird ein Ausgangstrom von 10A programmiert. Alle angeschlossenen Geräte werden so auf 10A eingestellt. Da drei Geräte parallel geschaltet sind, ergibt sich ein Gesamtstrom von 3 x 10A = 30A

ID oder IDN? - Identification

Anzeige des Identification String. Rückgabewert: <ID-String>.

IMPP[,<impp>] - Set Impp

Einstellung des MPP-Stroms für den PV-Sim-Modus. Bei Eingabe ohne Parameter, wird der aktuelle Sollwert angezeigt. Ist der Setzwert größer als der maximale Strom des Gerätes, wird das Range-Error-Bit im ESR-Register der Schnittstelle gesetzt. Der aktuelle Setzwert bleibt in diesem Fall unverändert. Ist der Setzwert größer als der I_{limit} -Wert, der in den Benutzereinstellungen eingestellt wird, aber kleiner als der Maximalstrom des Gerätes, so wird die Strombegrenzung auf den I_{limit}-Wert begrenzt. Es erfolgt keine Fehlermeldung.

Beispiel:

GTR Fernsteuerbetrieb
OVP,200 Over Voltage Protection

UA,50.5

IA,10

UMPP,40.4

IMPP,8.2

Leerlaufspannung des simulierten PV-Generators 50.5 V
Kurzschlussstrom des simulierten PV-Generators 10 A
MPP-Spannung des simulierten PV-Generators 40.4 V
MPP-Strom des simulierten PV-Generators 8.2 A

MODE, PVSIM PV-Simulations modus einschalten

SB,R Ausgang freigeben

Im Master-Slave-Betrieb wird der Strom des programmierten Gerätes eingestellt. In Parallelschaltung beträgt der Gesamtstrom n x IA.

LIMI - Limit Ia

Auslesen der maximal einstellbaren Strombegrenzung. Mit diesem Befehl kann der im Konfigurationsmenü eingestellte maximale Ausgansstrom abgefragt werden.

Beispiel: 300A-Gerät, Ilimit wurde im Configmenü auf 200 A eingestellt

LIMI Abfrage des maximal einstellbaren Strom

LIMI,200.0A Antwort vom Gerät I_{limit} = 200 A

LIMP - Limit Pa

Auslesen der maximalen Geräteleistung.

Beispiel: 10 kW-Gerät

LIMP Abfrage der Geräteleistung LIMP,10000 Antwort vom Gerät: 10 kW

LIMR - Limit R

Auslesen des Einstellbereiches für Ri im UIR-Modus.

Beispiel:

LIMR Abfrage des Einstellbereich für den Innenwiderstand

LIMR,0.015R,1.00R Antwort vom Gerät: 15 mOhm bis 1 Ohm

LIMRMAX - Limit R_{max}

Auslesen des Einstellbereiches für R_i im UIR-Modus (Maximalwert).

Beispiel:

LIMRMAX Abfrage des maximal einstellbaren Innenwiderstandes

LIMRMAX,1.000R Antwort vom Gerät: 1 Ohm

LIMRMIN - Limit R_{min}

Auslesen des Einstellbereiches für Ri im UIR-Modus (Minimalwert).

Beispiel:

LIMRMIN Abfrage des minimal einstellbaren Innenwiderstandes

LIMRMIN,0.015R Antwort vom Gerät: 15 mOhm

LIMU - Limit Ua

Auslesen der maximal einstellbaren Spannungsbegrenzung. Mit diesem Befehl kann die im Konfigurationsmenü eingestellte maximale Ausgangsspannung abgefragt werden.

Beispiel: 300 V-Gerät wurde im Konfigurationsmenü auf 200 V eingestellt.

LIMU Abfrage des maximal einstellbaren Stromes

LIMU,200.0V Antwort vom Gerät U_{limit} = 200 V

LLO - Local Lockout

Deaktivierung des LOCAL-Tasters. Gerät kann nicht durch Drücken des Standby-Tasters in den LOCAL-Betrieb geschaltet werden. Kein Rückgabewert.

MI[,<Nr>] - Measure Ia

Messwert des aktuellen Ausgangsstroms.

Beispiel:

GTR Fernsteuerbetrieb

OVP,200 Over Voltage Protection 200 V UA,10 Ausgangsspannung 10 V IA,1 Ausgangsstrom 1 A SB,R Ausgang freigeben

MI Messung des aktuellen Ausgangsstromes

MI,0.567A Antwort vom Gerät: 567 mA

Im Master-Slave-Betrieb in Parallelschaltung wird der Gesamtstrom der vernetzen Geräte angezeigt. Mit dem Parameter <Nr> können die Werte der einzelnen angeschlossenen Geräte abgefragt werden. Die Nummerierung beginnt mit 0.

Beispiel:

MI,2 gibt den gemessenen Ausgangsstrom des 3. Gerätes am Bus aus.

MODE[,{UI|UIP|UIR|PVSIM|USER|Script|0|1|2|3|4|5}] - Set Mode

Auswahl der Betriebsart. Bei Eingabe ohne Parameter, wird die aktuell eingestellte Betriebsart ausgegeben. Bei Eingabe mit Parameter wird die jeweilige Betriebsart aktiviert. Alternativ kann die Betriebsart auch als Ziffer angegeben werden.

Folgende Tabelle zeigt die unterschiedlichen Einstellungen:

Befehl	Funktion
MODE,UI MODE,0	UI-Mode einschalten
MODE,UIP MODE,1	UIP-Mode einschalten
MODE,UIR MODE,2	UIR-Mode einschalten
MODE,PVSIM MODE,3	PV-Simulation-Mode einschalten
MODE,USER MODE,4	Benutzerdefinierte UI-Kennlinie einschalten. Die Kennlinie wird mit den Befehlen <i>DAT</i> , <i>WAVE</i> , <i>WAVELIN</i> und <i>WAVERESET</i> definiert.
MODE,SCRIPT MODE,5	Script-Mode einschalten. Das Script wird über die Speicherkarte eingelesen oder über den SCR-Befehl geladen.

MU[,<Nr>] - Measure U_a

Messwert der aktuellen Ausgangsspannung.

Beispiel:

GTR Fernsteuerbetrieb

OVP,200 Over Voltage Protection 200 V UA,10 Ausgangsspannung 10 V IA,1 Ausgangsstrom 1 A SB,R Ausgang freigeben

MU Messung der aktuellen Ausgangsspannung

MU,10.0V Antwort vom Gerät: 10 V

Im Master-Slave-Betrieb in Reihenschaltung wird die Gesamtspannung der vernetzen Geräte angezeigt. Mit dem Parameter <Nr> können die Werte der einzelnen angeschlossenen Geräte abgefragt werden. Die Nummerierung beginnt mit 0.

Beispiel:

MU,1 gibt die gemessene Ausgangsspannung des 2. Gerätes am Bus aus.

*OPT? - Optional IDentification Query

Optionale Identifikationsabfrage. Ausgabe der Software-Version.

Beispiel:

*OPT? Versionsnummer abfragen

08.06.2012 V42 Antwort vom Gerät: Version 42 vom 08.06.2012

OVP[,<Uovp>] - Over Voltage Protection

Einstellung des Überspannungsschutzes. Bei Eingabe ohne Parameter, wird der aktuelle Sollwert angezeigt. Wenn der Setzwert größer ist als maximal 1,2 x Spannung des Gerätes, wird das Range-Error-Bit im ESR-Register der Schnittstelle gesetzt. Der aktuelle Setzwert bleibt in diesem Fall unverändert.

Beispiel:

GTR Fernsteuerbetrieb

OVP,200 Over Voltage Protection 200 V UA,100 Ausgangsspannung 100 V IA,10 Ausgangsstrom 10 A SB,R Ausgang wird freigegeben

PA[,<Plimit>] - Set Plimit

Einstellung der Leistungsbegrenzung für den UIP-Modus. Bei Eingabe ohne Parameter, wird der aktuelle Sollwert ausgegeben. Ist der Setzwert größer als die maximale Leistung des Gerätes, wird das Range-Error-Bit im ESR-Register der Schnittstelle gesetzt. Der aktuelle Setzwert bleibt in diesem Fall unverändert.

Beispiel:

GTR Fernsteuerbetrieb
MODE,UIP UIP-Mode einschalten
OVP,200 Over Voltage Protection 200 V
UA,100 Ausgangsspannung 100 V
IA,10 Ausgangsstrom 10 A
PA,500 Leistungsbegrenzung 500 W
SB,R Ausgang wird freigegeben

Im Master-Slave-Betrieb wird die Leistung des programmierten Gerätes eingestellt. Die Gesamtleistung beträgt n x PA.

Beispiel:

2 Geräte sind im MS-Betrieb geschaltet. Mit PA,100 wird eine Ausgangsleistung von 100 W programmiert. Beide angeschlossenen Geräte werden so auf 100 W eingestellt. Die Gesamtleistung beträgt 2 x 100 W = 200 W.

PCx[,<baud>,<parity>,<data bits>,<stop bits>,<handshake>,<echo>,<timeout>] - Program Communication

Einstellung der Schnittstellen. Das LAB/SMS verfügt über maximal 3 digitale Schnittstellen (x = 1, 2 oder 3). Dementsprechend lauten die Befehle *PC1*, *PC2* oder *PC3*. Art und Anzahl der Parameter hängen von der Art der Schnittstelle ab. Für GPIB und LAN sind derzeit keine Einstellmöglichkeiten verfügbar. Bei Eingabe ohne Parameter, werden aktuelle Schnittstellenparameter angezeigt.

Parameter	Fähigkeit	
<baud></baud>	Baudrate in bps	
<parity></parity>	Daten-Parität, hierbei bedeutet: O = Odd = Ungerade Parität E = Even = Gerade Parität N = None = Kein Paritätsbit	
<data bits=""></data>	Anzahl der Datenbits	
<stop bits=""></stop>	Anzahl der Stopbits	
<handshake></handshake>	Handshake, hierbei bedeutet: H = Hardware S = Software N = None (keine Handshake)	
<echo></echo>	Zeichenecho, hierbei bedeutet: E = Echo = Echo eingeschaltet N = None = Echo ausgeschaltet	
<timeout></timeout>	Timeout in ms beim Umschalten zwischen Sende- und Empfangsbetreib (nur RS485)	

zulässige Parameter der RS232-Schnittstelle: PCx,<baud>,<parity>,<data bits>,<stop bits>,<handshake>,<echo>

Parameter	Fähigkeit
Baud:	1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 62500, 115200
Parity:	O, E, N
Data Bits:	7, 8
Stop Bits	1, 2
Handshake:	H, S, N
Echo:	E, N

zulässige Parameter der USB-Schnittstelle: PCx,<baud>,<parity>,<data bits>,<stop bits>,<handshake>,<echo>

Parameter	Fähigkeit	
Baud:	1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 62500, 115200	
Parity:	O, E, N	
Data Bits:	7, 8	
Stop Bits	1, 2	
Handshake:	H, S, N	
Echo:	E, N	

Anm.: Die USB-Schnittstelle wird PC-seitig als virtueller COM-Port angesteuert, daher entsprechen die Parameter denen der RS232-Schnittstelle.

Zulässige Parameter der RS485-Schnittstelle: PCx,<baud>,<parity>,<data bits>,<stop bits>,<timeout>

_	the state of the s	
Parameter	Fähigkeit	
Baud:	1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 62500, 115200	
Parity:	O, E, N	
Data Bits:	7, 8	
Stop Bits	1, 2	
Timeout:	0100	

Sollen die Schnittstellenparameter dauerhaft geändert werden, müssen nach dem entsprechenden *PCx*-Befehl die Daten mit dem Befehl *<SS>* gespeichert werden. Kein Rückgabewert.

Beispiel:

PC1 Abfragen der Parameter der ersten Schnittstelle

PC1,RS232,9600,N,8,2,N,E Antwort vom Gerät: PC1 ist eine RS232-Schnittstelle, 9600 Baus, 8 Datenbits, 2 Stoppbits, kein

Handshake, keine Paritätsprüfung, Echo eingeschaltet.

PC1,115200,N,8,2,N,E Baudrate auf 115200 Baud einstellen.

Die neue Baudrate ist unmittelbar nach senden des Befehls aktiv!

PC2 Abfragen der Parameter der zweiten Schnittstelle

PC2,RS485,9600,N,8,1,1 Antwort vom Gerät: PC2 ist eine RS485-Schnittstelle, 9600 Baus, 8 Datenbits, 1 Stoppbit.

Der Timeout beim Umschalten zwischen Empfangs- und Sendemodus beträgt 1ms.

PC2,9600,N,8,1,50 Timeout auf 50ms erhöhen.

PC3 Abfragen der Parameter der dritten Schnittstelle

PC3, EMPTY Antwort vom Gerät: Die Schnittstelle 3 ist in diesem Gerät nicht vorhanden.

SS Geräteeinstellungen speichern.

 $RA[,\langle R_i \rangle]$ - Set R_i

Einstellung des Innenwiderstands für den UIR-Modus. Bei Eingabe ohne Parameter wird der aktuelle Sollwert ausgegeben. Liegt der Setzwert außerhalb des Einstellbereiches, wird das Range-Error-Bit im ESR-Register der Schnittstelle gesetzt. Der aktuelle Setzwert bleibt in diesem Fall unverändert. Der Einstellbereich kann mit den Befehlen LIM-RMAX und LIMRMIN abgefragt werden.

Beispiel:

GTR Fernsteuerbetrieb
MODE,UIR UIR-Mode einschalten
OVP,200 Over Voltage Protection 200 V
UA,100 Ausgangsspannung 100 V
IA,10 Ausgangsstrom 10 A
RA,0.1 Innenwiderstand 0,1 Ohm
SB,R Ausgang wird freigegeben

REGLER[,<Nr>,<Kp>,<Ki>,<Kd>] - Reglerparameter

Einstellung der Reglerparameter für UIP, UIR und PVsim-Mode. Bei Eingabe ohne Parameter, werden die aktuellen Einstellungen als Tabelle ausgegeben. Die Parameter Nr bestimmt den zu setzenden Parametersatz.

- 0 Regler für den UIP
- 1 Regler für den UIR
- 2 Regler für den PVsim

Der Wertebereich der Reglerparameter beträgt 0...30000. Die neuen Einstellungen können mit dem Befehl SS permanent gespeichert werden. Eine genaue Beschreibung der Reglerparameter folgt im Abschnitt \rightarrow Regler.

Beispiel:

REGLER Aktuelle Einstellung auslesen

Typ P I D Antwort vom Gerät:

 $\begin{array}{lll} P 10 20 5 & UIP-Mode \ Kp = 20 \ Ki = 10 \ Kd = 5 \\ Ri \ 20 \ 20 \ 2 & UIR-Mode \ Kp = 20 \ Ki = 20 \ Kd = 5 \\ Pv \ 10 \ 5 \ 5 & Pv-Mode \ Kp = 10 \ Ki = 5 \ Kd = 5 \\ REGLER, 0, 10, 10, 5 & Neue \ Reglerparameter \ für \ UIP-Mode \ Neue \ Reglerparameter \ für \ UIR-Mode \ Neue \ Einstellungen \ speichern \\ \end{array}$

RI oder *RST - Reset Instrument

Die Steuerung führt einen Hardware-Reset aus. Kein Rückgabewert.

 $SB[,\{S|R|1|0\}]$ - Standby

Sperrung/Freigabe des Ausgangs. Wird dieser Befehl ohne Parameter angegeben, wird der aktuelle Zustand von Standby ausgegeben. Die Befehle SB,S und SB,1 schalten das Gerät auf Standby, der Ausgang ist abgeschaltet. Die Befehle SB,R und SB,0 schalten das Gerät auf Betrieb, der Ausgang ist eingeschaltet.

Beispiel:

GTR Fernsteuerbetrieb

OVP,200 Over Voltage Protection 200 V UA,100 Ausgangsspannung 100 V IA,10 Ausgangsstrom 10 A SB,R Ausgang wird freigegeben SB Status von Standby abfragen

SB,R Antwort vom Gerät: Ausgang ist freigegeben

SCR[,<CMD>[,<value>]] - Load Script

Programmieren des Scriptspeichers. Der Befehl *SCR* ohne Parameter initialisiert den Programmiervorgang. Der Befehl *SCR* mit Parameter schreibt die Befehle in den Scriptspeicher. Die Reihenfolge der Befehle entspricht dabei der Befehlsfolge des späteren Scripts. Die Scriptbefehle und deren Parameter sind im Abschnitt Scriptsteuerung beschrieben.

Beispiel:

GTR Fernsteuerbetrieb

OVP,200 Over Voltage Protection 200 V

SCR Initialisieren der Scriptprogrammierung

 SCR,U,12
 1. Scriptbefehl: U = 12 V

 SCR,I,15
 2. Scriptbefehl: I = 15 A

 SCR,UI
 3. Scriptbefehl: Mode UI

SCR,RUN 4. Scriptbefehl: Ausgang freigeben

SCR,LOOPCNT,10
SCR,U,12
SCR,DELAY,8
SCR,U,1
SCR,DELAY,1000
MODE,SCRIPT

5. Einsprungadresse loop
6. Scriptbefehl: U = 12 V
7. Scriptbefehl: 8 ms warten
8. Scriptbefehl: U = 1 V
9. Scriptbefehl: 1 s warten
Scriptmode einstellen

SB,R Script starten

SS oder *PDU - Save Setup

Speicherung der aktuellen Einstellungen (Schnittstellenparameter und Reglerparameter). Kein Rückgabewert.

STATUS - Status

Abfrage des Gerätestatus. Rückgabewert im Binärformat. Bedeutung der einzelnen Bits im Status-Byte:

Bit	Funktion
D15	Anzahl der Geräte im MS-Modus.
D14	Ist kein weiteres Gerät angeschlossen, wird 1 ausgege-
D13	ben, bei zwei Geräten am Bus wird eine 2 ausgegeben
D12	usw. Wenn der MS-Mode im Konfigurationsmenü ausgeschaltet ist, wird eine 0 ausgegeben.
D11	- reserviert -
D10	- reserviert -
D9	- reserviert -
D8	Limit Mode, Gerät in Leistungsbegrenzung
D7	Limit Mode, Gerät in Strombegrenzung
D6	Local Lockout (1 = LLO aktiv, 0 = LLO nicht aktiv)
D5	Local (1 = Gerätesteuerung über Front)
D4	Remote (1 = Gerätesteuerung über Digitalinterface)
D3	- reserviert -
D2	- reserviert -
D1	Standby (1 = Gerät in Standby)
D0	OVP (1 = Abschaltung durch Over Voltage Protection)

Beispiel:

STATUS Statusabfrage

STATUS,000000100010000 Antwort vom Gerät: Fernsteuerbetrieb, Leistungsbegrenzung

UA[,<Umax>] Set Umax

Einstellung der Spannungsbegrenzung. Bei Eingabe ohne Parameter, wird der aktuelle Sollwert angezeigt. Wenn der Setzwert größer als die maximale Spannung des Gerätes ist, wird das Range-Error-Bit im ESR-Register der Schnittstelle gesetzt. Der aktuelle Setzwert bleibt in diesem Fall unverändert. Wenn der Setzwert größer als der Ulimit -Wert, der in den Benutzereinstellungen eingestellt wird, aber kleiner als die Maximalspannung des Gerätes ist, so wird die Spannungsbegrenzung auf den Ulimit-Wert begrenzt. Eine Fehlermeldung erfolgt nicht.

Beispiel:

Fernsteuerbetrieb
Over Voltage Protection 320 V
Ausgangsspannung 100 V
Ausgangsstrom 10 A
Ausgang wird freigegeben
Ausgangsspannung 400 V. Dieser Befehl wird ignoriert, da die Spannung größer als die Maximalspannung des Gerätes
ist. Im Statusbyte wird "Rangerror" gesetzt.
Ausgangsspannung 250 V. Da im Konfigurationsmenü die Ausgangspannung auf 200 V begrenzt wurde, wird die Span-
nungsbegrenzung auf 200 V eingestellt. Ein Fehlerbit wird nicht gesetzt.
Abfrage der eingestellten Spannung
Antwort vom Gerät: Setzwert U _a = 200 V

Im Master-Slave-Betrieb wird die Spannung des programmierten Gerätes eingestellt. In MS-Reihenschaltung beträgt die Gesamtspannung n x UA.

Beispiel:

3 Geräte sind im MS-Betrieb in Reihe geschaltet. Mit UA,10 wird eine Ausgangspannung von 10V programmiert. Alle angeschlossenen Geräte werden so auf 10V eingestellt. Da drei Geräte in Reihe geschaltet sind, ergibt sich eine Gesamtspannung von 3 x 10 V = 30 V.

UMPP[,<Umpp>] - Set Umpp

Einstellung der MPP-Spannung für den PV-Sim-Mode. Bei Eingabe ohne Parameter, wird der aktuelle Sollwert angezeigt. Wenn der Setzwert größer als die maximale Spannung des Gerätes ist, wird das Range-Error-Bit im ESR-Register der Schnittstelle gesetzt. Der aktuelle Setzwert bleibt in diesem Fall unverändert. Ist der Setzwert größer als der Ulimit - Wert, der in den Benutzereinstellungen eingestellt wird, aber kleiner als die Maximalspannung des Gerätes, so wird die Spannungsbegrenzung auf den Ulimit-Wert begrenzt. Eine Fehlermeldung erfolgt nicht.

Beispiel:

GTR Fernsteuerbetrieb

OVP,200 Over Voltage Protection 200 V

UA,50.5
IA,10
UMPP,40.4
IMPP,8.2
Leerlaufspannung des simulierten PV-Generators 50.5 V
Kurzschlussstrom des simulierten PV-Generator 10 A
MPP-Spannung des simulierten PV-Generators 40.4 V
MPP-Strom des simulierten PV-Generator 8,2 A

MODE, PVSIM PV-Simulations modus einschalten

SB,R Ausgang freigegeben

Im Master-Slave-Betrieb wird die MPP-Spannung des programmierten Gerätes eingestellt. In Reihenschaltung beträgt die MPP-Gesamtspannung n x UMPP.

WAVE - End Userwave Data

Schließt die Übertragung von Daten für eine benutzerdefinierte Ausgangskennlinie ab. Die Interpolation der Zwischenwerte erfolgt stufig. Die genaue Funktion dieses Befehls wird im Abschnitt \rightarrow Wavereset beschrieben.

WAVELIN - End Userwave Data

Schließt die Übertragung von Daten für eine benutzerdefinierte Ausgangskennlinie ab. Die Interpolation der Zwischenwerte erfolgt linear. Die genaue Funktion dieses Befehls wird im Abschnitt \rightarrow Wavereset beschrieben.

WAVERESET, <Umax> < Imax> - Start Userwave Data

Startet die Übertragung von Daten für eine benutzerdefinierte Ausgangskennlinie. Die Parameter U_{max} und I_{max} geben die maximale Spannung der fertigen Ausgangskennlinie an. Im Anschluss an diesen Befehl können mit dem Befehl DAT die Stützpunkte der UI-Kennlinie eingegeben werden. Die Kennlinie wird mit den Befehlen WAVE oder WAVE-LIN abgeschlossen.

Beispiel:

GTR Fernsteuerbetrieb

OVP,200 Over Voltage Protection 200 V WAVERESET,100,10 Ausgangsskennline mit maximal 100 V und 10 A

DAT,90,1 Stützpunkt 90 V, 1 A
DAT,50,5 Stützpunkt 50 V, 5 A
DAT,10,9 Stützpunkt 10 V, 9 A

WAVELIN Abschluss der Kennlinie, lineare Interpolation

MODE, USER Erstellte UI-Kennlinie aktivieren

SB,R Ausgang freigegeben

Weitere Informationen und Beispiele zu den benutzerdefinierte Kennlinien sind in den Abschnitten → Wave, Wavelin und Kennlinienprogrammierung (Scriptsteuerung) beschrieben.

Antwortstring

Der Antwortstring setzt sich wie folgt zusammen:

Befehl Komma Wert Einheit <CR> <LF>

Der Wert wird als Fließkommazahl mit einem Punkt '.' als Trennzeichen ausgegeben.

Gesendeter Befehl	Antwortstring
IA	IA,12.34A
LIMU	LIMU,500.0V
LIMI	LIMI,30.00A
LIMP	LIMP,15000W
LIMRMIN	LIMRMIN,0.015R
LIMRMAX	LIMRMAX,0.110R
LIMR	LIMR 0 015R 0 110R

Gesendeter Befehl	Antwortstring
MU	MU,10.0V
PA	PA,12W
RA	RA,0.015R
UA	UA,100.0V
UMPP	UMPP,90.2V
IMPP	IMPP,10.01A
OVP	OVP,600.0V

Beispiel: Befehl als ASCII- und HEX-Protokoll

L I M U , 5 0 0 . 0 V 4C 49 4D 55 2C 35 30 30 2E 30 56 0D 0A

Die Nachkommastellen entsprechen der Auflösung des Gerätes.

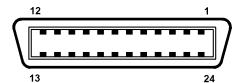
<u>Beispiel</u>

UA bei einem 600 V-Gerät UA,123.4V UA bei einem 50 V-Gerät UA,23.44V

Die Vorkommastellen variieren je nach erforderlichem Messwert.

Beispiel: 600 V-Gerät

UA,10.4V UA,220.3V UA,1.1V


Beispiel: 50 V-Gerät

UA,1.23V UA,10.47V UA,0.01V

EXT. STEUERUNG: COMPUTER

GPIB

Der Anschluss erfolgt über eine 24-polige Centronics-Steckverbindung. Die Geräteadresse wird mit den DIP-Schaltern S1-S5 eingestellt. Dabei hat S1 die geringste Wertigkeit und S5 die höchste.

Nr	Bezeichnung	Funktion
1	DIO1	Datenleitung 1
2	DIO2	Datenleitung 2
3	DIO3	Datenleitung 3
4	DIO4	Datenleitung 4
5	EOI	End or Identify
6	DAV	Data Valid
7	NRDF	Not Ready for Data
8	NDAC	Not Data Accepted
9	IFC	Interface Clear
10	SRQ	Service Request
11	ATN	Attention
12	SHIELD	Abschirmung
13	DIO5	Datenleitung 5
14	DIO6	Datenleitung 6
15	DIO7	Datenleitung 7
16	DIO8	Datenleitung 8
17	REN	Remote Enable
18 - 23	GND	Ground
24	SGND	Signal Ground

Tabelle: Geräteadresse

S1	S2	S3	S4	S5	Adresse
Off	Off	Off	Off	Off	0
On	Off	Off	Off	Off	1
Off	On	Off	Off	Off	2
On	On	Off	Off	Off	3
Off	Off	On	Off	Off	4
On	Off	On	Off	Off	5
Off	On	On	Off	Off	6
On	On	On	Off	Off	7
Off	Off	Off	On	Off	8
On	Off	Off	On	Off	9
Off	On	Off	On	Off	10
On	On	Off	On	Off	11
Off	Off	On	On	Off	12
On	Off	On	On	Off	13
Off	On	On	On	Off	14
On	On	On	On	Off	15

S1	S2	S3	S4	S5	Adresse
Off	Off	Off	Off	On	16
On	Off	Off	Off	On	17
Off	On	Off	Off	On	18
On	On	Off	Off	On	19
Off	Off	On	Off	On	20
On	Off	On	Off	On	21
Off	On	On	Off	On	22
On	On	On	Off	On	23
Off	Off	Off	On	On	24
On	Off	Off	On	On	25
Off	On	Off	On	On	26
On	On	Off	On	On	27
Off	Off	On	On	On	28
On	Off	On	On	On	29
Off	On	On	On	On	30
On	On	On	On	On	31

Die Geräteadresse wird nur beim Einschalten eingelesen. Eine Änderung der DIP-Schalter während des laufenden Betriebs bewirkt keine Änderung der Geräteadresse!

Tabelle: Geräteausrüstung (entsprechend IEEE-488.1)

SH1 Source Handshake Funktion vorhanden AH1 Acceptor Handshake Funktion vorhanden
AH1 Acceptor Handshake Funktion vorhanden
Talker, Serial Poll, Endadressierung durch MLA
L4 Listener Funktion, Endadressierung durch MTA
SR1 Service Request vorhanden
RL1 Remote/Local Funktion vorhanden
PPO keine Parallel-Poll Funktion
DC1 Device Clear Funktion vorhanden
DTO keine Trigger Funktion
CO keine Controller Funktion
E1 Open-Collector Treiber

Statuswort

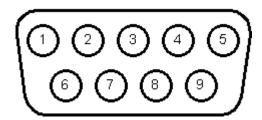
Zum Auslesen des Statuswortes wird der Befehl <*STB*> oder <**STB*?> benötigt. Rückgabewert: STB,xxxxxxxxx

Tabelle: Auslesen des Statusworts

Bit	Funktion
D7	nicht verwendet
D6	SRQ wird gesetzt, wenn SRQ angefordert wurde
D5	ESB wird gesetzt, wenn ein Byte im SES-Register gesetzt wurde
D4	MAV wird gesetzt, wenn eine Nachricht verfügbar ist
D3	nicht verwendet
D2	s. Tabelle
D1	s. Tabelle
D0	s. Tabelle

Tabelle: Fehlermeldungen

	0 -			
D3	D2	D1	D0	Fehler
0	0	0	1	Syntax
0	0	1	0	Command
0	0	1	1	Range
0	1	0	0	Unit
0	1	0	1	Hardware
0	1	1	0	Read


ESR-Register - Event-Status-Register

Das Auslesen des ESR-Registers erfolgt mit dem Befehl <*ESR?>. Rückgabewert: ESR,xxxxxxxxx. Nach der Abfrage wird das ESR-Register gelöscht.

Bit	Funktion
D7	Power on
D6	Command Error
D5	User Request
D4	Execution Error
D3	Device dependent Error
D2	Query Error
D1	Request Control
D0	Operation complete

RS232 SCHNITTSTELLE

Der Anschluss der RS232-Schnittstelle erfolgt über eine 9-polige Sub-D-Steckverbindung. Als Verbindungskabel wird ein Nullmodemkabel benötigt.

Nr	Bezeichnung	Funktion
1	N.C.	
2	RxD	Datenleitung vom PC zum Gerät
3	TxD	Datenleitung vom Gerät zum PC
4	N.C.	
5	GND	GND
6	N.C.	
7	RTS	Empfangsbereitschaft des Geräts, Signalrichtung vom Gerät zum PC (nur erforderlich bei eingeschalteten Hardwarehandshake)
8	CTS	Empfangsbereitschaft des PCs, Signalrichtung vom PC zum Gerät (nur erforderlich bei eingeschalteten Hardwarehandshake)
9	N.C.	

Die Schnittstelle kann mit den folgenden Parametern betrieben werden:

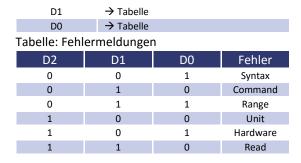
Baudrate: 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 62500, 115200

Parität: O = Odd = Ungerade Parität

E = Even = Gerade Parität N = None = Kein Paritätsbit

Anzahl der Datenbits: 7 oder 8
Anzahl der Stoppbits: 1 oder 2
Handshake: H = Hardware

S = Software


N = None (kein Handshake)

Für XON ist das Zeichen 0 x 11 definiert. Für XOFF ist das Zeichen 0 x 13 definiert.

Die Schnittstellenparameter im Auslieferungszustand sind 9600 Baud, keine Parität, 8 Datenbits, 1 Stoppbit, Echo eingeschaltet. Das Auslesen des Statusworts erfolgt mit dem Befehl *STB>* oder **STB?>*.

Das Auslesen des Statuswortes erfolgt mit dem Befehl *STB>* oder **STB?>*. Den einzelnen Bits sind dabei folgende Funktionen zugeordnet:

	- 0	
Bit	Funktion	
D15	Parity Error	
D14	Over Run Error	
D13	Framing Error	
D12	Timeout Error	
D11	Echo On	
D10	intern verwendet, 1 oder 0 möglich	
D9	Hardware handshake (RTS/CTS)	
D8	Software handshake (XON/XOFF)	
D7	Parity enable	
D6	Parity mode (1 = odd, 0 = even)	
D5	Stoppbit (1 = 2 Stoppbits; 0 = 1 Stoppbit)	
D4	Datenformat (1 = 8 Bit; 0 = 7 Bit)	
D3	intern verwendet, 1 oder 0 möglich	
D2	→ Tabelle	

Wird Echo eingeschaltet, quittiert die Schnittstelle jedes einlaufende Zeichen, indem sie das gleiche Zeichen an den Sender sendet. Die Schnittstellenparameter werden per Software mit dem Befehl <*PCx>* konfiguriert und mit dem Befehl <*SS>* abgespeichert.

Neukonfiguration der Schnittstelle

Sollte der Benutzer die aktuellen Einstellungen vergessen, verfügt er über zwei Möglichkeiten, um die Schnittstelle neu zu konfigurieren:

- Senden des Befehls < PCx > über eine andere Schnittstelle
- Konfiguration der Schnittstelle über das Display → Kapitel Schnittstellenparameter

RS485 SCHNITTSTELLE

Die Schnittstelle kann mit den folgenden Parametern betrieben werden:

Baudrate: 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 62500, 115200

Parität: O = Odd = Ungerade Parität

E = Even = Gerade Parität N = None = Kein Paritätsbit

Anzahl der Datenbits: 7 oder 8
Anzahl der Stoppbits: 1 oder 2
Timeout: 0... 100 ms

Der Timeout ist die Umschaltzeit zwischen dem Empfang einer Nachricht und dem Senden. Das angeschlossene Gerät wird selektiert, indem vor dem Befehl die Nummer des Gerätes zusammen mit dem Zeichen "#" angegeben wird. Wird statt der Nummer das Wort 'ALL' angegeben, wird der nachfolgende Befehl von allen angeschlossenen Geräten ausgeführt (z. B. #1,ID; #22,GTR, #ALL,GTL)

Beispiele:

#1,ID #22,GTR #ALL,GTL Das Auslesen des Statuswortes erfolgt mit dem Befehl *STB>* oder **STB?>*. Den einzelnen Bits sind dabei folgende Funktionen zugeordnet:

Bit	Funktion		
D15	Parity Error		
D14	Over Run Error		
D13	Framing Error		
D12	Timeout Error		
D11	nicht verwendet		
D10	nicht verwendet		
D9	nicht verwendet		
D8	nicht verwendet		
D7	Parity enable		
D6	Parity mode (1 = odd, 0 = even)		
D5	Stoppbit (1 = 2 Stoppbits; 0 = 1 Stoppbit)		
D4	Datenformat (1 = 8 Bit; 0 = 7 Bit)		
D3	nicht verwendet		
D2	→ Tabelle		
D1	→ Tabelle		
D0	→ Tabelle		

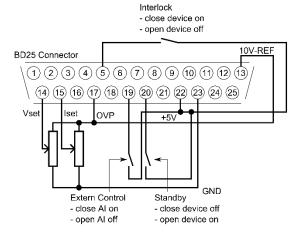
Tabelle: Fehlermeldungen

D2	D1	D0	Fehler
0	0	1	Syntax
0	1	0	Command
0	1	1	Range
1	0	0	Unit
1	0	1	Hardware
1	1 0		Read

Die Schnittstellenparameter werden per Software mit dem Befehl <*PCx>* konfiguriert und mit dem Befehl <*SS>* gespeichert.

Neukonfiguration der Schnittstelle

Sollte der Benutzer die aktuellen Einstellungen vergessen, verfügt er über zwei Möglichkeiten, um die Schnittstelle neu zu konfigurieren:


- · Senden des Befehls < PCx> über eine andere Schnittstelle
- · Konfiguration der Schnittstelle über das Display → Kapitel Schnittstellenparameter

EXT. STEUERUNG: AI-SCHNITTSTELLE (OPTION)

Das Gerät kann mit dem analogen/digitalen In/Out über Steuersignale bedient werden.

STECKVERBINDUNG AI-SCHNITTSTELLE

Nr. (BD25)	Dir	Bezeichnung	Funktion
1	analog out	U_{mon}	Monitor Sollwert U
2	analog out	I _{mon}	Monitor Sollwert I
3	analog out	P_{mon}	Monitor Istwert P
4	analog out	OVP _{mon}	Monitor Istwert OVP
5	digital in	Soft-Interlock	Interlockfunktion (Achtung: Interlock entspricht nicht den Maschinenrichtlinien)
6	-nc-	-	•
7	digital out	CV	signalisiert "Const. Voltage"-Modus
8	analog out	U _{istmon}	Monitor Ausgangsspannung
9	gnd	GND	-
10	digital out	Standby	signalisiert Standby
11	gnd	GND	-
12	-nc-	-	-
13	REF10	10 V-V _{ref}	Ausgang 10 V-Referenzspannung
14	analog in	U _{set}	Sollwert U
15	analog in	I _{set}	Sollwert I
16	analog in	In 2	-
17	analog in	OVP _{set}	Sollwert OVP
18	analog in	In 4	
19	digital in	Ext. Control	aktiviert auf Analogsteuerung
20	digital in	Standby	aktiviert Standby
21	analog out	listmon	Monitor Ausgangsstrom
22	pwr	+ 5 V	Ausgang 5 V-Versorgungsspannung
23	gnd	GND	-
24	digital out	Error	signalisiert Abschaltung durch OVP
25	gnd	GND	-
26	-nc-	-	-

Sämtliche digitalen Ausgänge sind OC-Ausgänge mit einem *Pullup*-Widerstand nach + 5 V. Alle analogen Ein- und Ausgänge können im 0 - 5 V oder im 0 - 10 V-Modus betrieben werden.

ANALOGEINGANG

An den Analogeingängen werden die Sollwerte in Form einer Gleichspannung (0 - 5 V oder 0 - 10 V) eingestellt. Welcher Spannungsbereich verwendet wird, kann im Konfigurationsmenü gewählt werden. Damit alle Änderungen übernommen werden, muss das Gerät nach dem Umschalten des Spannungsbereiches neu gestartet werden.

Sollwert U (U_{Set})

Sollwert Ausgangsspannung. Der Sollwert bezieht sich auf die Nennspannung des Gerätes.

Beispiel:

LAB/SMS mit 600 V Ausgangsspannung, AI ist auf 10 V eingestellt, gewünschte Ausgangsspannung = 100 V. U_{set} = 10 V \cdot 100 V \div 600 V = 1,667 V

Sollwert I (I_{Set})

Sollwert Ausgangsstrom. Der Sollwert bezieht sich auf den Nennstrom des Gerätes.

Beispiel:

LAB/SMS mit 100 A Ausgangsstrom, AI ist auf 10 V eingestellt, gewünschter Ausgangsstrom = 2 A. I_{set} = 10 V · 2 A ÷ 100 A = 0,200 V

Sollwert OVP (U_{OVP})

Überschreitet die Ausgangsspannung den eingestellten Wert, wird der Ausgang sofort abgeschaltet. Dieser Fehler wird durch den Ausgang "Error" angezeigt. Um diesen Fehler zurückzusetzen, muss der Standby-Modus aktiviert werden. Der Einstellbereich beträgt 0 V bis zur maximalen Nennspannung des Gerätes + 20%.

Beispiel:

LAB/SMS mit 600 V Ausgangsspannung, AI ist auf 10 V eingestellt, gewünschte OVP-Spannung = 650 V. Einstellbereich: 600 V + 20% = 720 V Uset = 10 V \cdot 650 V \div 720 V = 9,028 V

ANALOGAUSGANG

Die aktuellen Messwerte werden an den Analogausgängen in Form von Gleich-spannungswerten ausgegeben (unabhängig von der aktuellen Betriebsart). Somit kann die Al-Schnittstelle auch für Überwachungsfunktionen eingesetzt werden. Die maximale Spannung beträgt 5 V bzw. 10 V.

Monitor Sollwert U (Umon)

Aktueller Setzwert der Ausgangsspannung. Der Messwert bezieht sich auf die Nennspannung des Gerätes.

Beispiel:

LAB/SMS mit 600 V Ausgangsspannung, AI ist auf 10 V eingestellt, Spannung an dem Ausgang U_{mon} = 2 V. Aktueller Setzwert: U_{set} = 2 V \cdot 600 V \div 10 V = 120 V

Monitor Sollwert I (Imon)

Aktueller Setzwert des Ausgangsstroms. Der Messwert bezieht sich auf den Nennstrom des Gerätes.

Beispiel:

LAB/SMS mit 100 A Ausgangsstrom, AI ist auf 10 V eingestellt, Spannung an dem Ausgang I_{mon} = 2 V. Aktueller Setzwert: I_{set} = 2 V · 100 V ÷ 10 V = 20 A

Monitor Istwert P (Pmon)

Aktueller Messwert der Ausgangsleistung. Wird vom Controller aus den Messwerten der Ausgangsspannung und des Ausgangsstroms berechnet. Der Messwert bezieht sich auf die Nennleistung des Gerätes.

Beispiel:

LAB/SMS mit 15 kW Nennleistung, AI ist auf 10 V eingestellt, Spannung an dem Ausgang $P_{mon} = 5$ V. Aktuelle Ausgangsleistung $P_{out} = 5$ V · 15 kW \div 10 V = 7,5 kW

Analogausgang OVP (UOVPmon)

Aktueller Setzwert der Over Voltage Protection. Der Messwert bezieht sich auf die Nennspannung + 20% des Gerätes.

Beispiel:

LAB/SMS mit 600 V Ausgangsspannung, AI ist auf 10 V eingestellt, Spannung an dem Ausgang $U_{mon} = 2$ V. Das Signal bezieht sich auf 600 V + 20% = 720 V.

Aktueller Setzwert: $U_{ovp} = 2 \text{ V} \cdot 720 \text{ V} \div 10 \text{ V} = 144 \text{ V}$

Monitor Ausgangsspannung (Ulstmon)

Aktueller Messwert der Ausgangsspannung. Der Messwert bezieht sich auf die Nennspannung des Gerätes.

Beispiel:

LAB/SMS mit 600 V Ausgangsspannung, AI ist auf 10 V eingestellt, Spannung an dem Ausgang $U_{istmon} = 6$ V. Aktuelle Ausgangsspannung $U_{out} = 6$ V · 600 V ÷ 10 V = 360 V

Monitor Ausgangsstrom (I_{Istmon})

Aktueller Messwert des Ausgangsstroms. Der Messwert bezieht sich auf den Nennstrom des Gerätes.

Beispiel:

LAB/SMS mit 100 A Ausgangsstrom, AI ist auf 10 V eingestellt, Spannung am Ausgang I_{istmon} = 4 V. Aktueller Ausgangsstrom I_{out} = 4 V \cdot 100 A \div 10 V = 40 A

DIGITALEINGANG

Mit den Digitaleingängen kann die Betriebsart für die Analogsteuerung eingestellt werden. Die Eingänge sind *low aktiv*.

Aktivierung (Ext. Control)

Mit dem Eingang ,Ext. Control' wird die Betriebsart ,AI' ausgewählt. Eine Spannung von + 5 V bis + 10 V aktiviert die Al-Schnittstelle. Die Steuerung über die Front wird dabei deaktiviert. Auf dem Display ist diese Betriebsart mit ,AI' gekennzeichnet. Das Digital Interface hat gegenüber der AI-Schnittstelle Vorrang. Wird das Gerät über das Interface auf ,Remote' geschaltet, sind die Einstellungen der AI-Schnittstelle wirkungslos.

Soft-Interlock

Der Soft-Interlock schaltet das Gerät sofort ab, wenn die Verbindung zwischen Interlockeingang (Pin 5) und der +5 V Spannung geöffnet wird. Ist diese Verbindung offen kann der Ausgang des Gerätes nicht aktiviert werden, weder durch eine Schnittstelle noch durch die Frontbedienung. Der Soft-Interlock unterscheidet sich von einem Interlock darin, dass er nicht den Maschinenrichtlinien entspricht. Wird der Soft-Interlock ausgelöst, schaltet das Gerät in den Interlock-Modus.

Sperrung (Standby)

Der Standby-Modus wird aktiviert, wenn eine Spannung von + 5 V bis + 10 V angelegt wird. Das Ausgangssignal wird freigegeben, wenn der Eingang ,*Standby* inaktiv geschaltet ist.

DIGITALAUSGANG

An den Digitalausgängen werden die aktuellen Geräteeinstellungen ausgegeben (unabhängig von der aktuellen Betriebsart). Somit kann die AI-Schnittstelle auch für Überwachungsfunktionen verwendet werden. Die Pegel entsprechen einer negativen Logik: S = Set = log. 0; R = Reset = log. 1

Ein gesetzter Ausgang hat einen Spannungspegel von < 0,6 V. Ein nicht gesetzter Ausgang hat einen Spannungspegel von > 1,2 V.

Sperrung (Standby)

Die Ausgangssperrung wird gesetzt wenn sich das Gerät im Standby-Modus befindet.

CONST. VOLTAGE-MODUS (CV)

Der Constant Voltage-Modus wird gesetzt, wenn sich das Gerät im Konstant-Spannungsbetrieb befindet.

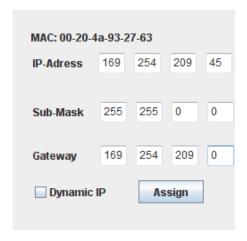
FEHLER (ERROR)

Wird gesetzt, wenn das Gerät durch die OVP-Überwachung abgeschaltet wurde. Um diesen Fehler zurückzusetzen, muss der Standby-Modus aktiviert werden.

EXT. STEUERUNG: ETHERNET (LAN)

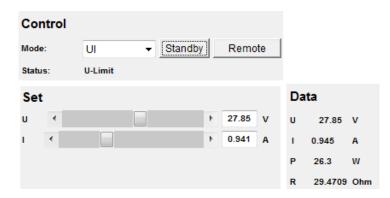
Um mit dem LAB/SMS über ein Netzwerk zu kommunizieren, muss dem Gerät zunächst eine IP-Adresse zugewiesen werden. Im Auslieferungszustand bezieht sich das Gerät automatisch eine IP vom Netzwerk. Im praktischen Betrieb ist dies jedoch ungünstig, da das Gerät nach erneutem Einschalten eine andere IP-Adresse hat. Es sollte daher jedem Gerät eine individuelle, feste IP-Adresse zugewiesen werden.

Das Auslesen des Statusworts erfolgt mit dem Befehl *STB* oder **STB?* Verwendet werden nur die Bits D0 bis D2. Alle anderen Bits können 1 oder 0 sein.


Tabelle: Fehlermeldungen

D2	D1	D0	Fehler
0	0	1	Syntax
0	1	0	Command
0	1	1	Range
1	0	0	Unit
1	0	1	Hardware
1	1	0	Read

MANUELLE IP-ZUWEISUNG UNTER MICROSOFT WINDOWS®


Der IP-Eintrag wurde zur ARP-Tabelle hinzugefügt, das Gerät hat jedoch noch keine neue IP. Hierzu muss Telnet mit der gewünschten IP auf Port 1 ausgeführt werden: telnet xxx.xxx.xxx 1. ,xxx′ steht für die gewünschte, neue IP-Adresse. Die Verbindung kommt zwar nicht zustande, die neue IP wird dem Gerät dennoch zugewiesen. Allerdings ist die Vergabe der IP dynamisch, so dass diese Einstellung verloren geht, nachdem das Gerät vom Netzwerk getrennt wurde.

Die Benutzeroberfläche kann direkt durch den Aufruf der neuen IP-Adresse geladen werden: http://xxx.xxx.xxx.xxx.Der Menüpunkt ,Config' ruft die Einstellung der IP-Adresse des Gerätes auf. Hierzu muss im Browser Java aktiviert sein.

STEUERUNG DES GERÄTES ÜBER EINEN BROWSER

Die Benutzeroberfläche kann direkt durch den Aufruf der IP-Adresse geladen werden: http://xxx.xxx.xxxx. Der Menüpunkt ,Control' ruft die Steuerung des Gerätes auf. Hierzu muss im Browser Java aktiviert sein.

Bei der Steuerung des Gerätes über einen Browser, darf keine andere Steuerung über eine Telnet-Verbindung aktiv sein!

STEUERUNG DES GERÄTES ÜBER TELNET

Das Gerät kann über den Port 10001 direkt gesteuert werden. Nach dem Öffnen der Steuerkonsole, öffnet ein Klick auf "Start" und "Ausführen" ein Eingabefeld. Nach Eingabe des Befehls *cmd* oder *command* öffnet sich ein DOS-Fenster mit folgendem Inhalt: telnet xxx.xxx.xxx 10001. Viele Terminal-Programme verfügen alternativ zu Telnet über die Möglichkeit eine TCP/IP bzw. Telnet-Verbindung aufzubauen.

Bei Steuerung über den Port 10001, darf die Benutzeroberfläche des Gerätes nicht in einem Browser geöffnet sein.

ÜBERWACHUNG DES GERÄTES ÜBER EINEN BROWSER

Die Benutzeroberfläche kann direkt durch den Aufruf der IP-Adresse geladen werden: http://xxx.xxx.xxx. Der Menüpunkt ,*Display*' ruft die Überwachung des Gerätes auf. Hierzu muss im Browser Java aktiviert sein. Angezeigt werden alle aktuellen Messwerte. Ihre Aktualisierung erfolgt alle 2 Sekunden. Bei Verwendung der Überwachungsfunktion sollte die automatische Umschaltung in den Remotebetrieb bei Empfang eines Befehls ausgeschaltet sein (Befehl <*GTR*,0>).

Data		Status		
U	27.85	v	Mode:	UI
1	0.945	Α	Status:	Run
P	26.3	w	Control:	Remot
R	29.4709	Ohm	Limit:	U

EXT. STEUERUNG: USB

Die USB-Schnittstelle stellt auf dem PC einen virtuellen COM-Port zur Verfügung. Über diesen Port kann das Gerät wie mit einer normalen RS232-Schnittstelle, beispielsweise mit einem Terminalprogramm, gesteuert werden. Entsprechende Treiber für alle gängigen Betriebssysteme sind als Download unter: http://www.ftdichip.com/Drivers/VCP.htm verfügbar.

Das Auslesen des Statusworts erfolgt mit dem Befehl <*STB*> oder <**STB*?>.

Bit	Funktion
D15	Parity Error
D14	Over Run Error
D13	Framing Error
D12	Timeout Error
D11	Echo On
D10	intern verwendet, 1 oder 0 möglich
D9	Hardware handshake (RTS/CTS)
D8	Software handshake (XON/XOFF)
D7	Parity enable
D6	Parity mode (1 = odd, 0 = even)
D5	Stoppbit (1 = 2 Stoppbits; 0 = 1 Stoppbit)
D4	Datenformat (1 = 8 Bit; 0 = 7 Bit)
D3	intern verwendet, 1 oder 0 möglich
D2	→ Tabelle
D1	→ Tabelle
D0	→ Tabelle

Tabelle: Fehlermeldungen

D2	D1	D0	Fehler
0	0	1	Syntax
0	1	0	Command
0	1	1	Range
1	0	0	Unit
1	0	1	Hardware
1	1	0	Read

Für XON ist das Zeichen 0 x 11 definiert. Für XOFF ist das Zeichen 0 x 13 definiert.

Die Schnittstellenparameter werden per Software mit dem Befehl <*PCx>* konfiguriert und mit dem Befehl <*SS>* abgespeichert.

Neukonfiguration der Schnittstelle

Sollte der Benutzer die aktuellen Einstellungen vergessen, verfügt er über zwei Möglichkeiten, um die Schnittstelle neu zu konfigurieren:

- · Senden des Befehls < PCx> über eine andere Schnittstelle
- · Konfiguration der Schnittstelle über das Display → Kapitel Schnittstellenparameter

DATENLOG-FUNKTION (OPTION)

Das Gerät verfügt über eine Datenlog-Funktion. Eine Speicherkarte kann als Datenlogger verwendet werden. Alle Messwerte werden, durch Tabulatoren getrennt, als Textdatei gespeichert. Das Zeitintervall kann im Bereich von 1-4294967 s (= 71 Minuten) eingestellt werden. Um die Datenlog-Funktion einzuschalten, muss eine Speicherkarte eingesteckt sein. Im Hauptverzeichnis der Speicherkarte, muss eine als "LABLOG.txt" benannte Textdatei vorhanden sein. Die neuen Daten werden an diese Datei angehängt.

Die Speicherkarte darf nur im Standby-Modus eingesteckt oder entnommen werden!

Ist in der ersten Zeile, an der ersten Stelle der Datei ein Eintrag "interval=xxxx" (xxxx = Zeit in Sekunden) vorhanden, wird das Speicherintervall entsprechend eingestellt. Der Eintrag muss in Kleinbuchstaben und ohne Leerzeichen geschrieben sein. Wird kein Intervall angegeben beträgt das Speicherintervall 60 Sekunden.

Beispiel:

interval=30

Die Datenlog-Funktion arbeitet immer, wenn sich das Gerät nicht im Standby-Modus befindet. Die Funktion wird durch ein kleines Speicherkarten-Symbol oben rechts im Hauptdisplay angezeigt. Wird ein neuer Datensatz auf die Karte geschrieben, erscheint das Symbol für ca. 1 Sekunde ausgefüllt. Ist die Speicherkarte voll, erscheint das Symbol durchgestrichen.

DATENFORMAT DER GESPEICHERTEN DATEN

Der erste Eintrag zeigt den aktuellen Betriebsmodus. Der zweite Eintrag zeigt den aktuellen Betriebsstatus. Dann folgen ,U_{dc}' und ,I_{dc}'.

Beispiel:

USER	I-Limit 1,0	10,02
USER	OVP 0,0	0,00
UI	U-Limit 100,01	0,10
UIP	U-Limit 100,0	0,10

SCRIPT-MODUS

Funktionsabläufe können über ein Script programmiert werden. Ein Script ist eine Textdatei, in der eine Folge von Befehlen gespeichert ist. Dieses Script kann über die Speicherkarte eingelesen. Alternativ kann der Scriptspeicher auch über eine digitale Schnittstelle programmiert werden. Hierzu wird der Befehl *SCR* verwendet, dessen Funktion im Abschnitt \rightarrow Beschreibung der Befehle erläutert ist. Das Gerät kann bis zu 1000 Befehle verarbeiten.

AUSFÜHREN/LADEN EINES SCRIPTS

Das fertige Script muss auf eine MMC- oder SD-Karte abgespeichert werden. Die Datei muss mit der Endung *.txt oder *.scr gespeichert sein.

Im Übersichtsbildschirm muss der Modus "Scr" gewählt werden. Durch Drücken des Drehimpulsgebers öffnet sich das Dateiauswahlmenü. Die Datei kann nun ausgewählt werden. Sollte sie nicht korrekt gelesen werden können, erscheint eine Fehlermeldung. Sollte die eingelesene Einstellung ungültig sein (z. B. IA 40 bei einem 10 A-Gerät) erscheint eine Fehlermeldung. Um ins Dateiauswahlmenü zurückzukehren muss der Drehimpulsgeber oder die Taste *Display* erneut gedrückt werden. Das Script ist jetzt geladen und kann durch Drücken der Taste *Standby* gestartet werden.

Im Feld "Preset" werden die letzten 5 Befehle des Scripts angezeigt. Der aktuelle Befehl steht ganz oben. Erneutes Drücken der Taste **Standby** beendet das Script und schaltet das Gerät in den Standby-Modus.

BEFEHLE

Syntax

Groß- und Kleinschreibung werden nicht beachtet. Somit haben zum Beispiel die folgenden Befehle die gleiche Wirkung: *PMAX 100 Pmax 100 pMaX 100*. Zwischen zwei Befehlen oder zwischen Befehl und Parameter muss ein Trennzeichen stehen. Zulässige Trennzeichen sind: Leerzeichen, Tabulator, LineFeed <LF>, Carriage Return <CR> und das Gleichheitszeichen (=).

Zahlenwerte müssen immer in ihrer Grundeinheit angegeben werden. Als Trennzeichen für Nachkommastellen kann ein Punkt oder ein Komma verwendet werden. Es dürfen jedoch keine Buchstaben folgen: U 12,345 U 10.00 U 12. Der Befehlt UAC 12.114V wäre ungültig, da ein Buchstabe folgt.

Es ist möglich alle Befehle hintereinander, durch Leerzeichen getrennt zu schreiben: U 10 I 1 UIP LOOP RUN Auf Grund des unübersichtlichen Aufbaus, ist diese Schreibweise jedoch nicht empfehlenswert.

Schnellübersicht der Befehle

Befehl	Beschreibung	Ergebnis
; oder #	Kommentar	Eingabe von kommentiertem Text.
DELAY <t>, DELAYS<s></s></t>	Verzögerung	Verzögert die Ausführung des Scripts für die Zeit t.
I <i ampère="" in=""></i>	Ausgangsstrom	Sollwert Ausgangsstrom einstellen.
IMPP <i ampère="" in=""></i>	MPP-Strom	MPP-Strom in Ampère für die PV Simulation.
LOOP, LOOPCNT <n></n>	Rücksprung-Schleife	Rücksprungadresse festlegen.
PMAX	Max. Leistung UIP-Modus	Maximale Leistung für den UIP-Modus.
PV	PVsim-Modus	Einschalten des PVsim-Modus.
RI	Innenwiderstand UIR-Modus	Sollwert des Innenwiderstands in Ohm für den UIR-Modus.
RUN	Ausgang freigeben	Freigabe des Ausgangs.
STANDBY	Ausgang sperren	Sperrung des Ausgangs.
U	Sollwert Ausgangsspannung	Sollwert der Ausgangsspannung in V.
UI	UI-Modus	Einschalten des UI-Modus.
UIP	UIP-Modus	Einschalten des UIP-Modus.
UIR	UIR-Modus	Einschalten des UIR-Modus.
UMPP	Sollwert MPP-Spannung	Sollwert der MPP-Spannung für die PV-Simulation in V.
USER	Sollwerte Strom und Spannung	Generiert Sollwerte für Strom- und Spannung mit der internen Tabelle.
WAIT	Warten	Wartet auf eine Benutzeraktion.
WAVE, WAVELIN	Kennlinienprogrammierung	Starte Programmierung der Kennlinien.
-WAVE, -WAVELIN	Kennlinienprogrammierung	Beende Programmierung der Kennlinien.

Ausführliche Beschreibung der Befehle

; oder # - Kommentar

Text kommentieren. Alle Zeichen von ; od. # bis Zeilenende werden ignoriert. Diese Funktion ist nicht verfügbar bei der Programmierung über die digitale Schnittstelle.

Beispiel:

Dies ist ein Kommentar

UIP # Dieser Befehl schaltet den UIP-Mode ein

; Kommentare können auch mit einem Semikolon anfangen

DELAY, DELAYS - Verzögerung

Die Befehle DELAY bzw. DELAYS verzögern die Ausführung des Scripts. Die nachfolgende Zahl gibt die Verzögerung in ms (Millisekunden) bzw. s (Sekunden) an. Maximal sind 65535 ms bzw. 65535 s möglich.

Beispiel:

UI # UI-Mode

U 10 # Ausgangsspannung 10 V I 1 # Ausgangsstrom 1 A RUN # Ausgang freigeben DELAY 200 # 200 ms warten

U 100 # Ausgangsspannung auf 100 V erhöhen

DELAYS 10 # 10 Sekunden warten STANDBY # Ausgang abschalten

I - Sollwert Ausgangsstrom

Stellt den Sollwert für den Ausgangsstrom in Ampère ein.

Beispiel:

I 9.8 # Ausgangsstrom 9,8 A

IMPP - Sollwert MPP-Strom

Stellt den Sollwert für den MPP-Strom für die PV-Simulation in Ampère ein.

Beispiel:

IMPP 8.123 # MPP-Strom 8,123 A

LOOP, LOOPCNT - Rücksprung Schleife

Normalerweise endet das Script mit dem letzten Befehl. Mit dem Befehl *<LOOP>* kann eine Rücksprungadresse festgelegt werden, an der die Verarbeitung nach dem letzten Befehl des Scripts fortgesetzt wird. Um das Programm zu unterbrechen, muss die Taste *STANDBY* gedrückt werden.

Der Befehl < LOOPCNT > arbeitet wie der Befehl Loop. Hier wird aber die Anzahl der Schleifendurchläufe angegeben. Die maximale Anzahl beträgt 65535.

Beispiel:

Dieses Beispiel schaltet den Ausgang für 10s ein, dann für 2s aus # und beginnt von vorne. Dies wird solange ausgeführt, bis der Benutzer durch

Drücken der Standby-Taste den Vorgang abbricht.

UI # UI-Mode

U 100 # Ausgansspannung 100V I 10 # Ausgangstrom 10A LOOP # Einsprungadresse RUN # Ausgang freigeben DELAYS 10 # 10s warten STANDBY # Ausgang abschalten

DELAYS 10 # 2s warten

Dieses Beispiel arbeitet wie das vorangegangene Beispiel.

Der Zyklus wird jedoch nur 10 mal ausgeführt. Dann wird das Script beendet.

UI # UI-Mode

U 100 # Ausgansspannung 100V I 10 # Ausgangstrom 10A LOOPCNT 10 # Einsprungadresse RUN # Ausgang freigeben DELAYS 10 # 10s warten STANDBY # Ausgang abschalten

DELAYS 10 # 2s warten

PMAX - max. Leistung UIP-Mode

Maximale Leistung für den UIP-Modus.

PV - PVsim-Modus

Schaltet den PVsim-Modus ein.

Beispiel:

PVSIM #PV-Simulation einschalten

RI - Innenwiderstand UIR-Modus

Stellt den Sollwert des Innenwiderstands für den UIR-Modus ein.

RUN - Ausgang freigeben

Der Befehl RUN setzt den Standby-Modus zurück und gibt den Ausgang frei.

Beispiel:

RUN # Ausgang freigeben

STANDBY - Ausgang sperren

Der Befehl STANDBY sperrt den Ausgang und versetzt das Gerät in den Standby-Modus.

Beispiel:

STANDBY # Ausgang abschalten

U - Sollwert Ausgangsspannung

Sollwert der Ausgangsspannung in V.

Beispiel:

U 100 # Ausgangsspannung 100 V

UI - UI-Modus

Schaltet den UI-Modus ein. Das Gerät arbeitet strom- und spannungsgeregelt.

Beispiel:

UI # UI-Modus

UIP - UIP-Modus

Schaltet den UIP-Modus eins. Das Gerät arbeitet strom-, spannungs- und leistungsgeregelt.

UIR - UIR-Modus

Schaltet den UIR-Modus ein. Das Gerät arbeitet strom- und spannungsgeregelt. Zusätzlich wird ein Innenwiderstand simuliert.

UMPP - Sollwert UMPP-Spannung

Sollwert der MPP-Spannung für die PV-Simulation in V.

Beispiel:

UMPP 80.42 # MPP-Spannung 80,42V

USER - Sollwerte Strom und Spannung

Die Sollwerte für Strom- und Spannung mit der internen Tabelle generieren. Damit lassen sich beliebige UI-Kennlinien einstellen. Mit dem *WAVE*-Befehl können diese Tabellen vorher erstellt werden.

WAIT - Warten auf Benutzeraktion

Das Programm wird solange angehalten, bis der Benutzer die Standby-Taste drückt.

Beispiel:

; Starterkennlinie:

ÜI **UI-Mode** I 10 : Strombegrenzung 10A U 12 RUN

; Ausgangsspannung 12V (->100%) ; Ausgang freigeben

LOOP ; Einsprungadresse nach Ende des Scripts WAIT ; Auf Drücken des Drehimpulsgebers warten

U 10.5 : 1. Rampe

U 9 ; Ein Befehl wird in einer ms abgearbeitet. Daher U 7,5 ; wird die Rampe mit 5 Zwischenwerten realisiert. U 6

U 4,5

DELAY 15 ; 15 ms Pause ; 2. Rampe U 4,8

U 5,1 Ein Befehl wird in einer ms abgearbeitet. Daher U 5,4 wird die Rampe mit 5 Zwischenwerten realisiert.

U 5,7

U 6

DELAY 2000 ; 2000ms Pause ; 3. Rampe U 6,6

U 7,2 Ein Befehl wird in einer ms abgearbeitet. Daher U 7,8 wird die Rampe mit 10 Zwischenwerten realisiert. U 8,4

U 9 U 9,6 U 10,2 U 10,8 U 11,4 U 12

WAVE, WAVELIN - Kennlinienprogrammierung

Der Befehl WAVE leitet die Kennlinienprogrammierung ein. Dann folgen Zahlenwerte, die die gewünschte Spannung und den gewünschten Strom angeben. Den Abschluss bildet der Befehl mit vorangestelltem '-'-Zeichen (-WAVE).

WAVE <U1> <I1>

<U2> <I2> <U3> <I3>

<Un> <In> -WAVE

Der Befehl WAVELIN wird genauso verwendet wie der WAVE-Befehl.

WAVELIN

<U1> <I1> <U2> <I2>

<U3> <I3>

<Un> <In>

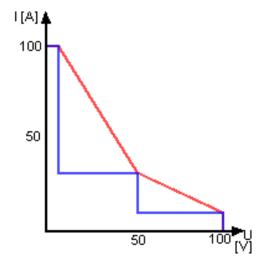
-WAVELIN

WAVELIN

Die Zwischenwerte zwischen den Stützpunkten werden bei WAVELIN linear interpoliert, bei WAVE stufig (siehe Beispiel). Nicht stetige Kennlinien oder Kennlinien, die einen negativen Verlauf simulieren werden zwar akzeptiert. Das Regelverhalten des Gerätes ist jedoch u. U. nicht vorhersehbar.

Beispiel:

; Kennlinie mit stufigen Zwischenwerten

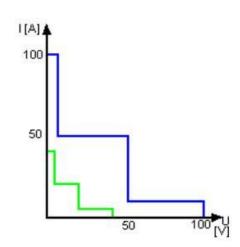

; Mit diesem Script wird der blaue Kennlinienverlauf erzeugt

WAVE ; Start der Tabelle 100 10 ; 100 V 10 A 50 25 ; 50 V 25 A 10 100 ; 10 V 100 A -WAVE ; Ende der Tabelle RUN ; Ausgang freigeben

; Kennlinie mit linearen Zwischenwerten

; Ausgang freigeben

; Mit diesem Script wird der rote ; Kennlinienverlauf erzeugt. WAVE ; Start der Tabelle 100 10 ; 100 V 10 A 50 25 ; 50 V 25 A 10 100 ; 10 V 100 A -WAVELIN ; Ende der Tabelle


Wird nach die Ausgangspannung oder Ausgangstrom des Gerätes nachträglich verändert, behält die Kennlinie ihren Verlauf bei. Die Werte werden jedoch auf den neuen Bereich gestreckt bzw. gestaucht.

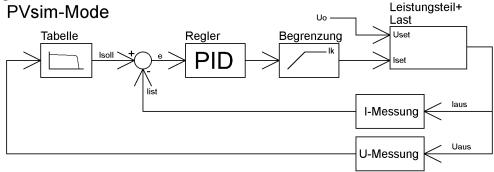
Beispiel:

RUN

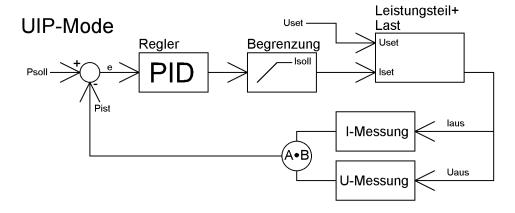
Mit diesem Script wird zunächst eine blaue Kennlinie erzeugt # Nach dem 10-Sekunden-Delay wird auf die grüne Kennlinie umgeschaltet:

WAVE # Start der Tabelle 100 10 # 100 V 10 A # 50 V 50 A 50 50 10 100 # 10 V 100 A -WAVE # Ende der Tabelle U 100 # Ausgangsspannung 100 V I 100 # Ausgangsstrom 100 A **USER** # Kennlinie auswählen RUN # Ausgang freigeben **DELAY 10000** # 10 Sekunden warten # Ausgangsspannung 50 V U 50 I 50 # Ausgangsstrom 50 A

REGLER


Die Software enthält drei digitale PID-Regler. Jeweils ein Regler ist dem UIR-, UIP- und dem PVsim-Modus zugeordnet. Bei Bedarf können die Reglerparameter über das Universalinterface verändert werden.

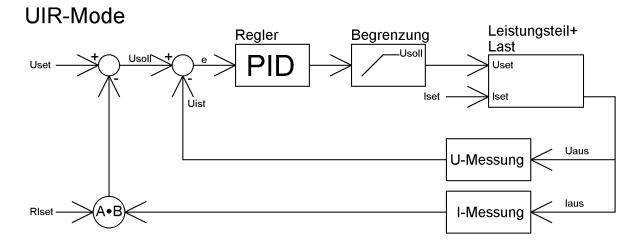
Eine unsachgemäße Einstellung des Reglers kann zu Reglerschwingungen führen, die u. U. angeschlossene Geräte zerstören!


REGLERSTRUKTUR PVSIM-MODUS UND USER-MODUS

Aus der Ausgangsspannung wird mit einer Tabelle der Sollwert für den Strom ermittelt. Dieser liefert nach der Subtraktion mit dem Istwert das Eingangssignal des PID-Reglers, der den Stromsollwert für das Leistungsteil ausgibt. Der Stromsollwert wird maximal auf den Kurzschlussstrom begrenzt. Der Spannungssollwert des Leistungsteils ist fest auf die Leerlaufspannung der Tabelle eingestellt. Im PVsim-Modus wird der Strom geregelt, die Spannung wird fest vorgegeben.

REGLERSTRUKTUR UIP-MODUS

Die Ausgangsspannung wird mit dem Ausgangsstrom multipliziert und von dem Leistungssollwert subtrahiert. Dieses Signal ist das Eingangssignal des PID-Reglers, der den Stromsollwert für das Leistungsteil ausgibt. Der Stromsollwert wird maximal auf den Stromsollwert begrenzt. Der Spannungssollwert des Leistungsteils ist fest auf den Spannungssollwert eingestellt. Im UIP-Modus wird der Strom geregelt, die Spannung wird fest vorgegeben.



REGLERSTRUKTUR UIR-MODUS

Der gemessene Ausgangsstrom wird mit dem eingestellten Innenwiderstand multipliziert. Das Ergebnis wird von dem eingestellten Sollwert subtrahiert und bildet den Sollwert für den Spannungsregler:

$$U_{soll} = U_{set} - I_a * R_i$$

Das Ausgangssignal wird auf den Spannungssollwert begrenzt. Der Stromsetzwert des Leistungsteils wird fest auf Isoll gelegt. Im UIR-Modus wird die Spannung geregelt, der Strom wird fest vorgegeben.

REGLERPARAMETER

allg. Differentialgleichung des PID-Reglers:

$$y = Kp \cdot \left(e + \frac{1}{Tn} \int e(t) dt + Tv \frac{de}{dt} \right)$$

E Regelabweichung

Kp Proportionalbeiwert

Tn Nachstellzeit

Tv Vorhaltzeit

Da der digitale Regler ein zeitdiskretes System ist, wird das Integral durch eine Summierung und das Differential durch eine Differenz ersetzt:

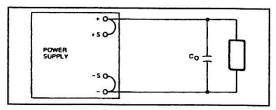
$$y = Kp \left(e_i + \frac{Ts}{Tn} \sum_{m = -\infty}^{m = i} e_m + \frac{Tv}{Ts} \left(e_i - e_{i-1} \right) \right)$$

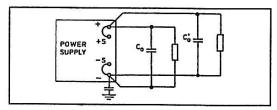
Ts Abtastzeit

In der Software ist der Regler mit folgender Gleichung realisiert:

$$y = 0.1 \cdot P \cdot e_i + 0.001 \cdot I \cdot \sum_{m=-\infty}^{m=i} e_m + 0.1 \cdot D \cdot (e_i - e_{i-1})$$

Die Parameter P, I und D berechnen sich wie folgt:

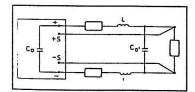

$$P = 10 \text{ Kp} \quad I = \frac{1000 \text{ Kp Ts}}{Tn} \quad D = \frac{10 \text{ Kp Tv}}{Ts}$$
Ts Abtastzeit = 300 us

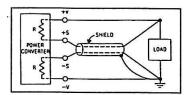

Die Reglerparameter können über eine digitale Schnittstelle mit dem Befehl REGLER programmiert werden.

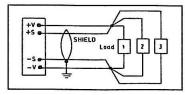
SENSEBETRIEB

LASTANSCHLUSS OHNE FÜHLERLEITUNG

Fast alle unsere Stromversorgungen besitzen Fühlerleitungsanschlüsse zur Nachregelung der Ausgangsspannung, um den Spannungsabfall auf den Lastleitungen zu kompensieren. Werden diese nicht benutzt, so müssen sie in jedem Fall unbedingt polrichtig mit den Lastausgängen direkt an den Ausgangsklemmen kurzgeschlossen werden. In keinem Fall darf Strom über die Fühleranschlüsse fließen. Bei mehreren Verbrauchern ist für einen zentralen Lastverteilungspunkt zu sorgen. Zur Reduktion von Lastspitzen und zum HF-Impedanzabschluss, sollte ein Kondensator 1-10 μ F an den Ausgang geschaltet werden.

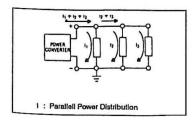


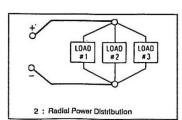


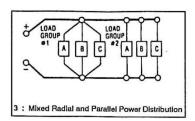

LASTANSCHLUSS MIT FÜHLERLEITUNG

Werden die vorhandenen Fühlerleitungen direkt an die Last bzw. am zentralen Lastverteilungspunkt angeschlossen, müssen folgende Punkte beachtet werden:

- vorhandene Fühlerleitungsbrücken am Netzteil entfernen
- + Sense und Sense polrichtig direkt am Lastverteilungspunkt anschließen
- + Sense und Sense Leitungen mit Kondensator 1-47 μF abschließen
- Fühlerleitung abschirmen, falls keine Abschirmung möglich, zumindest + Sense und Sense verdrillt führen
- Lastleitungsquerschnitt so wählen, dass Spannungsabfall < 0,4 V
- Überlastung der Netzteile vermeiden (Spannungsabfall pro Leitung x Strom)






Sollte es, trotz Beachtung der oben genannten Punkte durch Last- bzw. Leitungsinduktivitäten und komplexen Lastsituationen zur Schwingneigung kommen, kontaktieren sie bitte die Firma ET System.

LASTAUFTEILUNG OHNE FÜHLERLEITUNG

Für den richtigen Betrieb ist eine zentrale Lastverteilungssituation wichtig. Abb. 2 zeigt eine korrekte Lastverteilung. Abb. 1 zeigt eine unzureichende Versorgung von Last 2, Last 3 etc. über parallel geführte Lastleitungen. In der Praxis kann es vorkommen, dass eine optimale Aufteilung nicht möglich ist. Abb. 3 zeigt eine Mischaufteilung bei der zumindest die größten Verbraucher zentral versorgt werden.

MASTER/SLAVE-MODUS (M/S-MODE)

Im Master/Slave-Modus werden mehrere LAB/SMS Geräte über den ETS-Bus verbunden. Zur Verbindung der einzelnen Geräte werden handelsübliche USB-Kabel Typ A verwendet. Die Schnittstelle ist jedoch keine USB-Schnittstelle.

Die ETS-Schnittstelle darf nicht mit einem USB-Anschluss verbunden werden!

Die Schnittstelle hat zwei parallel geschaltete Anschlüsse. Damit lassen sich mehrere Geräte einfach parallel schalten. Sind mehrere LAB/SMS miteinander verbunden und eingeschaltet, wird automatisch jedem Gerät eine eigene Adresse zugewiesen. Ein Symbol oben rechts am Display zeigt an, dass sich die Geräte im M/S-Modus befinden.

Einen "Master" im engeren Sinn gibt es nicht. Sollwerte werden über den Bus an alle angeschlossenen Geräte weitergeleitet. Es können alle Parameter an allen Geräten eingestellt werden. Die Änderungen werden über den ETS-Bus automatisch an alle angeschlossenen Geräte weitergeleitet. Hierbei ist es egal, ob die Sollwerte an der Front oder über eine Schnittstelle programmiert werden.

Der LLO-Befehl an einer digitalen Schnittstelle sperrt die Bedienung an den Frontpanel aller angeschlossenen Geräte. Beispiel: 2 Geräte am Bus, Gerät 1 hat Frontsteuerung und digitale Schnittstelle, Gerät 2 hat nur Frontsteuerung

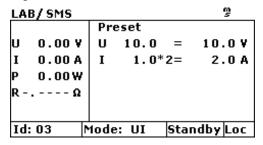
GTR Fernsteuerbetrieb, Sollwerte können über die digitale Schnittstelle oder an der Frontbedienung von Gerät 2 eingestellt werden. An Gerät 1 könnte jetzt durch Drücken des Standby-Tasters auf Local-Betrieb umgeschaltet werden. Im Display von Gerät 1 wird "Rem" (Remote) angezeigt, das Display von Gerät 2 zeigt "Loc" (Local) an.

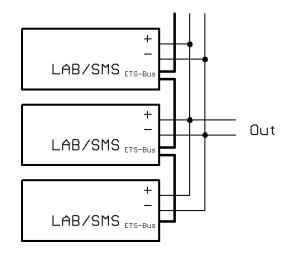
LLO Local Lockout, beide Geräte können nicht mehr über die Frontplatte bedient werden. Bei beiden Geräten wird dies durch "LLO" im Display angezeigt.

Hinweis: Der Master/Slave-Modus funktioniert derzeit nicht in Verbindung mit der Speicherkarte!

Werden die Sollwerte über die analoge Schnittstelle vorgegeben, darf nur ein Gerät über AI betrieben werden!

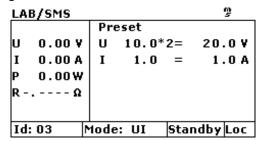
BETRIEBSARTEN IM MASTER/SLAVE-MODUS


Im Konfigurationsmenü kann der MS-Mode eingestellt werden.

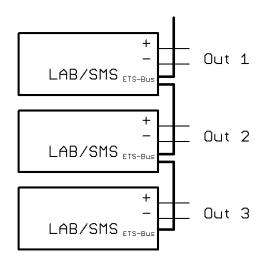

M/S-Modus Off

Kein Master/Slave-Modus, unabhängig davon, ob die Geräte verbunden sind oder nicht.

M/S-Modus Parallel


Die Steuerung geht davon aus, dass die Ausgänge parallel geschaltet sind. Die Sollwerte werden entsprechend umgerechnet. Die Displays zeigen als Messwert den Gesamtstrom an. Die Stromverteilung zwischen den einzelnen LAB/SMS ist nicht zwangsläufig symmetrisch, der Gesamtstrom wird jedoch auf den eingestellten Wert begrenzt.

M/S-Modus Serial


Die Steuerung geht davon aus, dass die Ausgänge in Reihe geschaltet sind. Die Sollwerte werden entsprechend umgerechnet. Die Displays zeigen als Messwert die Gesamtspannung an. Die Spannungserteilung zwischen den einzelnen LAB/SMS ist nicht zwangsläufig symmetrisch, die Gesamtspannung wird jedoch auf den eingestellten Wert begrenzt.

LAB/SMS ETS-Bus LAB/SMS ETS-Bus LAB/SMS ETS-Bus

M/S-Modus Independent

Die Steuerung geht davon aus, dass die Ausgänge unabhängig sind. Es werden nur die Sollwerte über den Bus ausgetauscht. Die Anzeige entspricht der Standardanzeige.

ÜBERSICHT DER ANGESCHLOSSENEN GERÄTE

Durch zweimaliges Drücken der Taste *Display* erscheint ein Menü, in dem die Daten der ersten vier am Bus angeschlossenen LAB/SMS angezeigt werden. Angezeigt werden die Spannung, der Strom und die Leistung der einzelnen Geräte. Zusätzlich werden auch die Gesamtdaten des Systems angezeigt.

LAB/	'SMS					1	ģ
Id	U[V]		I[A]		P[W	/]
02		0.0		0.	0		0.0
03		0.0		0.	0		0.0
Sum		0.0		0.	0		0.0
Id: 0	13	Mode	e:	UI	Sta	andby	Loc

STEUERUNG IM MASTER/SLAVE-MODUS ÜBER EIN DIGITALES INTERFACE

Die Setzwerte, die über eine digitale Schnittstelle gesendet werden, bestimmen die Setzwerte für das aktuelle Gerät. Diese Setzwerte werden auch an die anderen Geräte weitergeleitet, so dass die Gesamtspannung bzw. der Gesamtstrom höher sein kann.

Beispiel: 3 Geräte am Bus

GTR	Fernsteuerbetrieb einstellen
OVP,30	Over Voltage Protection auf 30 V einstellen
IA,10	Ausgangsstrom auf 10 A einstellen
UA,15	Ausgangsspannung auf 15 V einstellen

SB,R SB,R Ausgang freigeben

Alle am Bus befindlichen Geräte werden auf 15V/10A eingestellt. Wenn die Geräte parallelgeschaltet sind, ergibt sich eine Ausgangsspannung von 15 V und 30 A (= $3 \times 10 A$). Wenn die Geräte in Reihe geschaltet sind, ergibt sich eine Ausgangsspannung von 45 V (= $3 \times 15 V$) und 10 A.

Die Messwerte berücksichtigen die im Konfigurationsmenü eingestellte Konfiguration. Mit den Befehlen *MU* und *MI* wird die Gesamtspannung bzw. der Gesamtstrom des Systems ausgelesen. Mit einem Parameter können auch die Einzeldaten der am Bus angeschlossenen Geräte ausgelesen werden.

Beispiel: 3 Geräte am Bus im Parallelbetrieb

GTR	Fernsteuerbetrieb einstellen
OVP,30	Over Voltage Protection auf 30 V einstellen.
IA,10	Ausgangsstrom auf 10 A einstellen
UA,15	Ausgangsspannung auf 15 V einstellen
SB,R	Ausgang freigeben
MI	Aktuellen Strom messen

MI Aktuellen Strom messen
MI,28.4A Antwort vom Gerät: 28,4 A

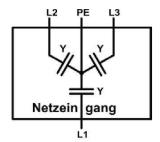
MI,0 Aktuellen Strom vom ersten Gerät messen

MI,9.1A Antwort vom Gerät: 9,1 A GTR Fernsteuerbetrieb einstellen MI,9.4A Antwort vom Gerät: 9,4 A

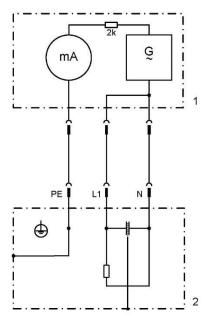
MI,2 Aktuellen Strom vom dritten Gerät messen

MI,9.9A Antwort vom Gerät: 9,9 A

ANHANG


ERSATZABLEITSTROMMESSUNG NACH VDE 0701

Die nach DIN VDE 0701-1 durchgeführte Ersatzableitstrommessung führt unter Umständen zu Ergebnissen, die außerhalb der Norm liegen. Grund: Die Messung wird in erster Linie an sogenannten Netzfiltern am Wechselspannungseingang der Geräte durchgeführt. Diese Filter sind symmetrisch aufgebaut, d. h. es ist unter anderem ein Kondensator von L1/2/3 nach PE geführt. Da bei der Messung L1, L2 und L3 verbunden werden und der nach PE abfließende Strom gemessen wird, liegen somit bis zu drei Kondensatoren parallel, was den gemessenen Ableitstrom verdoppelt oder verdreifacht. Nach geltender Norm ist dies zulässig.


Zitat aus der Norm von 2008, Anhang D:

"Es ist zu beachten, dass bei Geräten mit Schutzleiter und symmetrischen Beschaltungen, der mit dem Ersatzableitstromverfahren gemessene Schutzleiterstrom infolge der Beschaltung 3- bis 4-mal so hoch sein kann, wie der Ableitstrom der Beschaltung einer Phase."

Grafische Verdeutlichung der symmetrischen Schaltung:

Beispieldarstellung aus der Norm, Schutzleiterstrommessung, Ersatzableitstrom-Messverfahren:

Hinweis: Die Abbildung zeigt das Messverfahren für zweiphasige Netzanschlüsse. Bei einem Drehstromgerät wird Phase N dann durch L2 und/oder L3 ersetzt.

EIGENE NOTIZEN